Seth H 	SOC10701  	   40510741 


 
 
A Forensic Overview of Browser Cache Artefacts 
 
 
 

 
 
 
Submitted in partial fulfilment of the requirements of   
Edinburgh Napier University for the Degree of  
BSc Cyber Security  
  
 
 
 
School of Computing    
April 2023 
 	 


Authorship Declaration  

I, Seth H, confirm that this dissertation and the work presented in it are my own achievement. 
Where I have consulted the published work of others this is always clearly attributed; 
Where I have quoted from the work of others the source is always given. With the exception of such quotations this dissertation is entirely my own work; 
I have acknowledged all main sources of help; 
If my research follows on from previous work or is part of a larger collaborative research project I have made clear exactly what was done by others and what I have contributed myself; 
I have read and understand the penalties associated with Academic Misconduct. 
I also confirm that I have obtained informed consent from all people I have involved in the work in this dissertation following the School's ethical guidelines 
  
Signed: 
Date: 12/04/2023 
Matriculation no: 
 
General Data Protection Regulation Declaration  
Under the General Data Protection Regulation (GDPR) (EU) 2016/679, the University cannot disclose your grade to an unauthorised person. However, other students benefit from studying dissertations that have their grades attached. 
  
The University may not make this dissertation available to others.  
Signed: 
Date: 
Abstract 
With technology rapidly evolving, Statista (2022) reports that 63.1% of the global population are accessing the internet using web browsers as of July 2022. These web browsers store a copy of the visited webpage’s resources (e.g., images and videos) using browser cache files. During a forensic investigation, these browser cache files can provide evidence to the types of content that a user has been viewing, and a variety of tools can be used to parse these browser cache files.  
This project develops an MVP Cross-Browser Cache Parser through researching the knowledge and processes required for its development. A critical evaluation of the performance and capabilities of this MVP Cache Parser, ChromeCacheView, and MZCacheView is then performed to understand each parsers advantages and limitations. 
The literature review critically evaluated contemporary literature and introduced knowledge on the cache mechanisms of Google Chrome and Mozilla Firefox. From this, the use of portable and private web browsing capabilities was identified as one of the key factors which affected the availability of cache files. Additionally, the literature review also revealed that the existing research on the cache mechanisms for Google Chrome and Mozilla Firefox was outdated. A comparison was then performed, and the latest cache structures for Chrome and Firefox were extracted. This research surrounding Chrome and Firefox is then taken forward and used to inform the experiment methods of the methodology. 
Furthermore, the methodology outlines the methods which are supported by this project. The experiment methods define the MVP Cross-Browser Cache Parsers requirements using the MoSCoW prioritisation framework and the processes which will be followed during the cache parser’s development in Python. Using the processes and performance metrics outlined in the evaluation methods, the MVP Cross-Browser Cache Parser, ChromeCacheView, and MZCacheView are then evaluated. 
The results of this evaluation revealed that the MVP Cross-Browser Cache Parser was able to parse the different cache mechanisms used by Google Chrome and Mozilla Firefox. Additionally, the outcome of this evaluation recommends using the MVP Cross-Browser Cache Parser over 
ChromeCacheView when parsing Chrome cache files. For Firefox’s cache files, this project found that the MVP Cross-Browser Cache parser and MZCacheView should be used together. 
 	 
Contents 
List of Tables ............................................................................................................................. 8
List of Figures ...........................................................................................................................10
List of Abbreviations ..................................................................................................................12 Glossary of Terms .....................................................................................................................13 
1. Introduction ...........................................................................................................................17 
1.1 Background .....................................................................................................................17 
1.2 Aim ..................................................................................................................................19 
1.3 Research Questions ........................................................................................................19 
1.4 Objectives ........................................................................................................................19 
1.5 Rationale .........................................................................................................................19 
2. Literature Review ..................................................................................................................20 
2.1 Introduction ......................................................................................................................20 
2.2 Forensic Science, Digital Forensics, and Browser Forensics ...........................................20 
2.3 Hypertext Transfer Protocol (HTTP) and HTTP Caching .................................................21 
2.3.1 The Hypertext Transfer Protocol ...............................................................................21 
2.3.2 HTTP Caching Mechanisms ......................................................................................22 
2.4 Portable and Private Web Browsing Capabilities .............................................................24 
2.4.1 Overview of Private Web Browsing Capabilities ........................................................24 
2.4.2 Overview of Portable Web Browsers .........................................................................25 
2.4.3 Past Investigations into Private and Portable Web Browser Capabilities ...................26 
2.4.4 Google Chrome – Incognito Mode and Chrome Portable ..........................................26 
2.4.5 Mozilla Firefox – Private Browsing and Firefox Portable ............................................29 
2.5 Web Browser Cache Mechanisms and Structures ...........................................................30 
2.5.1 Comparison of the Caching Mechanisms for Google Chrome and Mozilla Firefox.....30
2.5.2 Comparison of the Cache Structure’s for Google Chrome and Mozilla Firefox ..........31
2.5.3 Cache Parsers for Google Chrome and Mozilla Firefox .............................................37
2.6 Summary .........................................................................................................................38
3. Methodology .........................................................................................................................39
3.1 Introduction ......................................................................................................................39
3.2 Quality Issues ..................................................................................................................39 
3.2.1 Reliability ..................................................................................................................39 
3.2.2 Validity ......................................................................................................................40 
3.2.3 Error ..........................................................................................................................40 
3.2.4 Bias ...........................................................................................................................40 
3.2.5 Ethical Considerations ..............................................................................................40 
3.3 Literature Review Methods ..............................................................................................41 
3.4 Project Management Methods .........................................................................................42 
3.5 Experiment Method .........................................................................................................42 
3.5.1 Introduction ...............................................................................................................42 
3.5.2 Cache Parser MoSCoW Requirements .....................................................................42 
3.5.3 Cache Parser Development ......................................................................................43 
3.5.4 Data Generation ........................................................................................................46 
3.6 Evaluation Methods .........................................................................................................47 
3.6.1 Selected Cache Parsers ............................................................................................48 
3.6.2 Performance Metrics Collected .................................................................................48 
3.6.3 Evaluation Process ...................................................................................................49 
3.7 Summary .........................................................................................................................49 
4. Results and Discussion .........................................................................................................50 
4.1 Introduction ......................................................................................................................50 
4.2 Changes ..........................................................................................................................50 
4.3 Technical Artefact – MVP Cross-Browser Cache Parser .................................................51
4.4 Quantitative Evaluation ....................................................................................................52
4.4.1 Quantitative Evaluation Results .................................................................................52
4.4.2 Quantitative Evaluation Discussion ...........................................................................54
4.5 Qualitative Evaluation ......................................................................................................56
4.5.1 Qualitative Evaluation Results ...................................................................................56
4.5.2 Qualitative Evaluation Discussion .............................................................................60 
4.6 Results Conclusion ..........................................................................................................61 
5. Conclusion ............................................................................................................................62 
5.1 Introduction ......................................................................................................................62 
5.2 Overview of The Project’s Conclusions ............................................................................62 
5.3 Project Reflection ............................................................................................................63 
5.3.1 Aim............................................................................................................................63 
5.3.2 Objectives .................................................................................................................63 
5.3.3 Research Questions (RQs) .......................................................................................65 
5.4 Limitations .......................................................................................................................65 
5.5 Future Work .....................................................................................................................66 
5.6 Self-appraisal ..................................................................................................................66 
6. References ...........................................................................................................................68 
7. Appendices ...........................................................................................................................73 
7.1 Appendix A – Chrome Cache Address Structure .............................................................73 
7.2 Appendix B – Reliability ...................................................................................................74 
7.3 Appendix C – Error ..........................................................................................................75 
7.4 Appendix D – Bias ...........................................................................................................75 
7.5 Appendix E – Reputable Source Repositories .................................................................76 
7.6 Appendix F – Keywords ...................................................................................................77 
7.7 Appendix G – Project Gantt Chart....................................................................................78 
7.8 Appendix H – MoSCoW Prioritisation Framework ............................................................79
7.9 Appendix I – Cache Parser Libraries ...............................................................................80
7.10 Appendix J – Multi-Browser Cache Identification Process..............................................81
7.11 Appendix K – Chrome Cache Parsing Process ..............................................................83
7.12 Appendix L – Firefox Cache Parsing Process ................................................................84
7.13 Appendix M – Cache Recovery Mechanism Process .....................................................85
7.14 Appendix N – CLI Integration Process ...........................................................................86 
7.15 Appendix O – Reporting Mechanism Process ................................................................87 
7.16 Appendix P – High-Level Object-Orientated Cache Parser Code Structure ...................88 
7.17 Appendix Q – Environment Specifications and Set-up Process .....................................89 
7.18 Appendix R – Standard Browser Installation Process ....................................................91 
7.19 Appendix S – Webpages Selected for Data Generation .................................................93 
7.20 Appendix T – Cache Parser Commands ........................................................................94 
7.21 Appendix U – Quantitative Evaluation Metrics ...............................................................95 
7.22 Appendix V – Qualitative Evaluation Questions .............................................................96 
7.23 Appendix W – Full Evaluation Process ..........................................................................97 
7.24 Appendix X – Windows Performance Monitor ................................................................98 
7.25 Appendix Y – Evaluation Process Changes ...................................................................99 
7.26 Appendix Z – The Cache Parser’s Command-Line Integration .................................... 100 
7.27 Appendix AA – The Cache Parser’s Cache Identification Functionality ........................ 102 
7.28 Appendix AB – The Cache Parser’s Chrome Parsing Mechanism ............................... 103 
7.29 Appendix AC – The Cache Parser’s Firefox Parsing Mechanism ................................. 106 
7.30 Appendix AD – Examples of The Cache Parser’s Cache Structures ............................ 109 
7.31 Appendix AE – The Cache Parser’s Recovery Mechanism .......................................... 110 
7.32 Appendix AF – The Cache Parser’s Reporting Mechanism.......................................... 112 
7.33 Appendix AG – The Cache Parser’s Error Handling and Logging ................................ 113 
7.34 Appendix AH – Full Quantitative Evaluation Results .................................................... 115 
 
List of Tables 
Table 1 – List of Abbreviations ..................................................................................................12 
Table 2 – Glossary of Terms .....................................................................................................13 
Table 3 – Table comparing the similarities and differences between the cache folder contents for 
Google Chrome and Mozilla Firefox - (Habben, 2015; Suma, Dija, & Pillai, 2017) .....................32 
Table 4 – Comparison of Chrome’s index file structure - red names indicate fields that weren’t present in the research conducted by Suma et al. (2017), but were included in the official source 
code provided by Chromium (2022a) ........................................................................................33 
Table 5 - Comparison of Chrome’s cache entry structure - red names indicate fields that weren’t present in the research conducted by Suma et al. (2017), but were included in the official source 
code provided by Chromium (2022a) ........................................................................................34 Table 6 – Comparison of Firefox’s index file’s header structure - red names indicate fields that weren’t present in the research conducted by Habben (2015), but were included in the official 
source code provided by Searchfox (2022) ...............................................................................35 
Table 7 – Comparison of Firefox’s index file’s record structure - red names indicate fields that weren’t present in the research conducted by Habben (2015), but were included in the official 
source code provided by Searchfox (2022) ...............................................................................36 Table 8 – Comparison of Firefox’s entry file metadata header structure - red names indicate fields that weren’t present in the research conducted by Habben (2015), but were included in the official 
source code provided by Searchfox (2021) ...............................................................................36 Table 9 – Cache Parser MoSCoW Requirements .....................................................................43 
Table 10 – Publicly available cache parsers selected for the evaluation. ..................................48 Table 11 – Quantitative evaluation results showing the total number of cached webpage resources identified and recovered by the MVP cross-browser cache parser, ChromeCacheView, 
and MZCacheView. ...................................................................................................................52 
Table 12 – Quantitative evaluation results showing the performance metrics collected after using the MVP Cross-Browser Cache Parser and ChromeCacheView to parse chrome cache files. ..53 Table 13 – Quantitative evaluation results showing the performance metrics collected after using the MVP Cross-Browser Cache Parser and MZCacheView to parse firefox cache files. ...........54 Table 14 – List of browsers which are supported by each of the cache parsers. .......................56 
Table 15 – Comparison of the report file formats supported by the MVP Cross-Browser Cache 
Parser, MZCacheView, and ChromeCacheView. ......................................................................57 Table 16 – Comparing the information present in Chrome’s cache files, to the information extracted and outputted by ChromeCacheView and the MVP Cache Parser. ...........................58 
Table 17 – Comparing the information present in Firefox’s cache files, to the information extracted and outputted by MZCacheView and the MVP Cache Parser. ..................................................59 
Table 18 – Structure of Chrome’s cache addresses - (Chromium, 2022b) ................................73 
Table 19 – Actions that are to be taken to consider reliability in each of the methods. ..............74 
Table 20 – Actions that are to be taken to minimise the risk of error. ........................................75 
Table 21 – Actions that will be taken to account for bias in the self-generated test data. ...........75 
Table 22 – Reputable source repositories used during the literature review. .............................76 
Table 23 – Keywords used to search and filter for sources during the literature review. ............77 
Table 24 – Categories of the MoSCoW Prioritisation Framework ..............................................79 
Table 25 - List of python libraries that will be used for the cross-browser cache parser. ............80 
Table 26 – Regular Expressions that will be used to identify cache folders for Chrome and Firefox
 .................................................................................................................................................82 
Table 27 – Virtual Environment Specifications ..........................................................................90 
Table 28 – Versions of Google Chrome and Mozilla Firefox used during data generation. ........92 Table 29 – Table of websites visited to generate the data used for the evaluation of the cache 
parsers. .....................................................................................................................................93 
Table 30 – Example commands that will be used to execute the individual cache parsers. .......94 
Table 31 – Cache folder paths that will be used during the evaluation. .....................................94 Table 32 – Performance-based metrics collected from the cache parsers during the evaluation.
 .................................................................................................................................................95 
Table 33 – Comparative questions asked to qualitatively evaluate the capabilities of the cache 
parsers. .....................................................................................................................................96 
Table 34 – The actual commands that were used to execute the cache parsers during the 
evaluation. ................................................................................................................................99 
Table 35 – The actual cache folder paths that were used during the evaluation. .......................99 Table 36 – Full results for the quantitative evaluation of the MVP Cross-Browser Cache Parser and ChromeCacheView against chrome cache files. .............................................................. 115 Table 37 – Full results for the quantitative evaluation of the MVP Cross-Browser Cache Parser 
and MZCacheView against firefox cache files. ........................................................................ 116 
 
 	 
Seth H 	SOC10701  	   40510741 

Page 1 of 116 
 
Page 1 of 116 
 
Page 1 of 116 
 
List of Figures 
Figure 1 – Desktop Web Browser Statistics by (StatCounter, 2022) ..........................................17 
Figure 2 – Client HTTP GET Request - (Fielding, Nottingham, & Reschke, 2022a) ..................21 
Figure 3 – Server HTTP Response - (Fielding, Nottingham, & Reschke, 2022a) .......................22 
Figure 4 – Cache Response and Cache Request Directives - (Fielding, Gettys, Mogul, H, & 
Berners-Lee, 1997) ...................................................................................................................22 
Figure 5 – Example of the first request sent being cached by the client’s web browser. ............23 
Figure 6 – Example of the same request being performed; this time being fetched from the 
browser’s local cache. ...............................................................................................................23 
Figure 7 – Google Chrome normal browsing mode – (Nelson, Shukla, & Smith, 2019) .............27 
Figure 8 – Google Chrome Incognito Browsing mode – (Nelson, Shukla, & Smith, 2019) .........27 
Figure 9 – Extracted Chrome Data – “X” indicates this information was able to be extracted, “-“ means this information was not able to be extracted (Nelson, Shukla, & Smith, 2019). .............27 Figure 10 – Artefacts extracted from different browsers running in private mode – (Flowers, 
Mansour, & Al-Khateeb, 2016) ..................................................................................................28 
Figure 11 – Artefacts extracted from different portable browsers running in normal mode – 
(Flowers, Mansour, & Al-Khateeb, 2016)...................................................................................28 
Figure 12 – Firefox artefact recovery and location – (Nelson, Shukla, & Smith, 2019)...............29 
Figure 13 - Google Chrome's cache folder (left) provided by (Suma, Dija, & Pillai, 2017) and 
Mozilla Firefox's cache folder (right) provided by (Habben, 2015). ............................................31 
Figure 14 – Literature review source selection process. ............................................................41 Figure 15 – Flowchart defining the process taken to generate the cache files used during the 
evaluation of the cache parser tools. .........................................................................................47 Figure 16 – Project Gantt Chart – Methodology Progress .........................................................78 
Figure 17 – Cache Identification Process. .................................................................................81 
Figure 18 – The logic and processing flow behind the Chrome Cache Parser ...........................83 
Figure 19 – The logic and processing flow behind the Firefox Cache Parser ............................84 Figure 20 – The logic and processing flow behind decompressing the raw bytes of the requested 
resource. ...................................................................................................................................85 Figure 21 – Cache Parser CLI Integration Process ...................................................................86 
Figure 22 – Reporting Mechanism Process ...............................................................................87 Figure 23 - High-level overview of the cache parser's code structure, and the OO classes used.
 .................................................................................................................................................88 Figure 24 – The environment set-up process used to create all the project’s virtual environments.
 .................................................................................................................................................89 
Figure 25 – The full process used to install Google Chrome and Mozilla Firefox onto the data 
generation environment. ...........................................................................................................91 
Figure 26 - The evaluation process used to evaluate the performance of the cache parsers. ....97 Figure 27 – The process used to collect performance metrics for each of the cache parsers during 
the evaluation............................................................................................................................98 
Figure 28 – The cache parser code used to implement the CLI Integration process. .............. 100 
Figure 29 – The cache parser’s help message displaying the arguments and flags it accepts.101 Figure 30 – The cache parser code used to implement the multi-browser cache identification 
process. .................................................................................................................................. 102 
Figure 31 – The code used to control the parsing of Chrome’s index files and cache entries. . 103 
Figure 32 - The code used to parse Chrome's index file. ......................................................... 104 
Figure 33 - The code used to parse Chrome's cache entries. ................................................. 105 
Figure 34 – The code used to control the parsing of Firefox’s index files and cache entry files.
 ............................................................................................................................................... 106 
Figure 35 – The code used to parse Firefox’s index file. ......................................................... 107 
Figure 36 – The code used to parse Firefox’s cache entries. .................................................. 108 
Figure 37 - Example of the cache structures defined in the cache parser's code..................... 109 
Figure 38 – The code used to recover and recreate the cached webpage resources for Google 
Chrome. .................................................................................................................................. 110 
Figure 39 – The code used to organise and output the recovered cached webpage resources.
 ............................................................................................................................................... 111 
Figure 40 – The code used to format the extracted cache information into a report. ............... 112 
Figure 41 – The code used to initialise the cache parser’s logging and output status updates to 
the log file. .............................................................................................................................. 113 Figure 42 - An example of the cache parser's log file. ............................................................. 114 
 
 	 
List of Abbreviations 
Table 1 – List of Abbreviations 
	Abbreviations 
	

	ACM 
	Association for Computing Machinery 

	CLI 
	Command Line Interface 

	CSV 
	Comma-Separated Values 

	DSDM 
	Dynamic System Development Method 

	GB 
	Gigabyte 

	GUI 
	Graphical User Interface 

	HTTP 
	Hypertext Transfer Protocol 

	IEEE 
	Institute of Electrical and Electronics Engineers 

	IETF 
	Internet Engineering Task Force 

	ISP 
	Internet Service Provider 

	JSON 
	JavaScript Object Notation 

	LRU 
	Least Recently Used 

	MVP 
	Minimum Viable Product 

	NAT 
	Network Address Translation 

	OO 
	Object Orientation 

	RFC 
	Request For Comments 

	RQ 
	Research Question 

	URI 
	Uniform Resource Identifier 

	URL 
	Uniform Resource Location 

	USB 
	Universal Serial Bus 

	VM 
	Virtual Machine 


 
Glossary of Terms 
Table 2 – Glossary of Terms 
	Term 

	Browser Cache 
(Also referred to as 
HTTP Cache) 
	These are files which are stored by a browser on a user’s local system through a defined cache mechanism, and when parsed, can be used to recover videos, images, and scripts from webpages that the user has visited (Suma, Dija, & Pillai, 2017; Sawicki, Zych, & Sawicki, 2021). 

	Browser Forensics 
	The process of collecting forensic artefacts left by a user’s web browsing activity (Suma, Dija, & Pillai, 2017; Jadhav & Meshram, 
2018). 

	Browsing Activity 
	A series of events (or activities) performed by a user, such as visiting a certain website, watching specific videos, and downloading files which are saved by the browser. 

	Cache Address 
	Cache addresses are found in chrome’s cache files, and they point to specific cache entries. 

	Cache Entries 
	Cache Entries are found in chrome’s cache files and contain information relating to the items cached by the browser. 

	Cache Mechanisms 
	The process of storing HTTP responses which contain the requested resources on the user’s local system, so that it can be easily re-used in later requests (Sawicki, Zych, & Sawicki, 2021). 

	Cache Parser 
	A small utility that finds and reads the cache folder of a web browsers, and parses each of the cache files to extract and display information relating to the files currently stored locally in the cache (NirSoft, 2022a; NirSoft, 2022b). 

	Cache Structures 
	The byte structure of an individual browser cache file. 

	Cache2 
	Mozilla Firefox’s specific cache mechanism. 



	Criminal Investigation 
	This investigation involves the analysis of evidence taken from a crime to inform the outcome of a case, and subsequently, have the criminals apprehended. 

	Cyber Crimes 
	Any type of criminal activity that is either enabled-by or involved a computer or a network (Brush, Rosencrance, & Cobb, 2021). 

	Data File 
	A cache file found in Google Chrome’s cache folder. 

	Digital Forensics 
	A branch of forensic science that involves the identification, collection, and examination of digital data used in criminal investigations to help investigate cyber-crimes and identify evidence relating to these computer-assisted crimes (Sadiku, Tembely, & Musa, 2017; Hughes, et al., 2021). 

	Disk Cache 
	Chromium specific cache mechanism which is used by Google Chrome. 

	Entry File 
	A cache file found in Mozilla Firefox’s cache folder. 

	External File 
	A cache file found in Google Chrome’s cache folder. 

	Forensic Artefacts 
	The files of interest that can function as pieces of evidence for the investigator and that allow for the identification of user’s activities. 

	Forensic Investigator 
	An individual who analyses the extracted digital evidence when performing digital forensics (Studiawan, Sohel, & Payne, 2019). 

	Forensic Science 
	An investigatory tool used in criminal investigations which enables the analysis of evidence through the application of scientific knowledge and methodologies (Afridi, 2021). 

	HTTP Request 
	A message sent by a client to request a resource from a server. 

	HTTP Response 
	A message sent by a server in response to a HTTP request, either delivering the requested resource or providing information on why the request failed. 

	Hypertext Transfer 
Protocol (HTTP) 
	The underlying protocol used by the Worldwide World to exchange messages across an established connection using a request/response module. Where clients construct request 

	
	messages to communicate with a server, and the server responds to these requests using response messages (Mozilla, 2022; Fielding, Nottingham, & Reschke, 2022a). 

	Index File 
	A cache file found in both Google Chrome’s and Mozilla Firefox’s cache folders. 

	Metadata 
	Additional information which describes other data. 

	Portable Web Browser 
	These are browsing applications which are stored and ran from an external storage device (Hariharan, Thakar, & Sharma, 2022; Flowers, Mansour, & Al-Khateeb, 2016). 

	Private Web Browsing 
Capabilities 
	These are found embedded within common web browsers and allow a user to minimise the number of files stored by the browser on their device that contain information relating to their web browsing activities (Horsman, et al., 2019). 

	Webpage Resources 
	Files found on a webpage and that are used by a webpage (such as scripts, images, and videos) 

	Web Browser 
	An application which allows people to access websites via the internet to search for information and communicate with others (Flowers, Mansour, & Al-Khateeb, 2016).  


 
 	 
Acknowledgements 
Firstly, I’m extremely grateful to all of those who provided me support during this project in its entirety. 
Specially thanks to John Colvin for the feedback and support given during the project. 
Also, thanks should go to my workplace team who continuously supported me by providing me with the tools and expertise needed to perform the research conducted in this project. 
Lastly, I’d like to mention my family as they have supported me throughout this project by keeping my motivations high. 
 
 	 

1. Introduction 
1.1 Background 
With technology evolving, a substantial percentage of the global population now have access to the internet, with Statista (2022) reporting that around 63.1% of the global population use the internet as of July 2022 (5.03 billion users).  
According to StatCounter (2022), Google Chrome dominates the 2022 global desktop browser market, ahead of other commonly available web browsers (Figure 1). 
 

Figure 1 – Desktop Web Browser Statistics by (StatCounter, 2022) 
These web browsers store browser files on the user’s system which can be analysed to identify a user’s browsing activities (Flowers, Mansour, & Al-Khateeb, 2016). A forensic investigator will use browser forensics to acquire and analyse these browser files generated by the web browsers, which include, but are not limited to, browser history, cache, bookmarks, and cookies (Suma, Dija, & Pillai, 2017). These browser files are a vital part of digital forensics, and thus are also known as forensic artefacts. 
Focusing more on the browser cache, it is an important forensic artefact because it enables forensic activities such as video reconstruction using the cached media content. Therefore, this allows a forensic investigator to discover and reconstruct the videos that a suspect had been viewing prior to the acquisition of the device (El-Tayeb, Taha, & Fayed, 2022). 
However, the availability of forensic artefacts such as browser cache differs between web browsers and their embedded privacy features. To preserve their user’s privacy, Google Chrome has Incognito Mode, which is a form of private browsing integrated into the web browser that disables both caching mechanisms and browser history (Narayanan, Rajkumar, & Sobhana, 2017). Nevertheless, if a user has used private browsing modes, the user’s browsing history can still be retrieved from external entities such as Internet Service Providers (ISPs) or Employers (Google, 2022). Moreover, when private browsing modes are used, the extraction of cache files becomes infeasible as these embedded privacy features either disable the browser’s caching mechanism or deletes the cache once the private browsing session has been closed. 
Portable web browsers store the web browser on an external storage device instead of the user’s computer (Flowers, Mansour, & Al-Khateeb, 2016). This can prove to be problematic because forensic artefacts of interest could potentially be stored on the external device, rather than the user’s local system. Without access to this external device, a forensic investigator has no way of extracting the user’s cache artefacts. 
Consequently, both portable web browsers and embedded privacy features reduce the number of forensic artefacts left available on the user’s system. Therefore, the importance of the browser’s cache and a user’s desire to hide their browsing activities makes accurately parsing these forensic artefacts crucial. With the right tools, a user’s web browser cache can be parsed to recover cached webpage resources (e.g., images and videos) which relate to the user’s browsing activity. 
Today, applications such as ChromeCacheView and MZCacheView facilitate the parsing of both Google Chrome and Mozilla Firefox caches, respectively. Both tools are publicly available and can be used to extract information relating to their respective browsers. However, these cache parsers are limited by nature as each tool only supports the parsing of one cache mechanism and only displays a subset of the information that can be extracted from the cache (Horsman, 2018b; Shafqat, 2016).  
Therefore, this project addresses the limitations of publicly available cache parsers to allow forensic investigators to use one tool to recover a suspect’s cached files for multiple windowsbased web browsers which use different caching mechanisms. 
1.2 Aim 
The aim of this project is to develop a minimum viable product (MVP) cross-browser cache parser – focusing on the normal installations of two major windows-based web browsers: Google Chrome and Mozilla Firefox. 
1.3 Research Questions 
Supporting the aim, this report tries to answer the following research questions: 
1. How do the cache structures and mechanisms present in Google Chrome and Mozilla 
Firefox differ? 
2. What information can be extracted from the caches of Google Chrome and Mozilla Firefox, using their normal, base installation? 
3. In terms of capability and performance, how do publicly available cache parsers differ to the MVP cross-browser cache parser? 
1.4 Objectives 
To achieve the project’s aim, the following objectives will be completed: 
1. Critically review contemporary literature surrounding the Hypertext Transfer Protocol (HTTP), HTTP Caching Mechanisms, Portable and Private Web Browser Capabilities, and the Cache Mechanism, Structures, and Parsers for Google Chrome and Mozilla Firefox. 
2. Research and develop an experimental methodology based on the outputs of the literature review. 
3. Execute the primary research and present the data needed to develop the MVP cache parser so that it can parse cache structures used in Google Chrome and Mozilla Firefox. 
4. Develop an MVP cache parser to recover the web browser’s cached webpage resources. 
5. Critically evaluate and discuss the performance and capabilities of the MVP cross-browser cache parser against publicly available cache parsers. 
6. Conclude the findings of the project while reflecting and making recommendations based on the findings. 
1.5 Rationale 
Current cache parsers are limited in their ability to extract and analyse the different caching mechanisms present in multiple browsers. The ability to produce a single cache parser that fully supports multiple browsers and their different caching mechanisms would have positive impacts on both the academic sphere and forensic sector. In the forensic sector, a single tool that can parse different browser caches allows for a lightweight and efficient solution to extracting a user’s browsing activity. Whereas in the academic sphere, the development of this cache parser enables the opportunity to develop current academic research into the latest versions of Google Chrome and Mozilla Firefox, further outlining how cache is stored in these browsers and what information can be extracted. For this project, the normal installations of the most popular consumer-based web browsers have been selected as a pragmatic approach to resource restrictions. 
2. Literature Review 
2.1 Introduction 
The objective of this literature review is to critically review contemporary literature surrounding HTTP Concepts, HTTP Caching Mechanisms, Portable and Private Web Browser Capabilities, and finally, the Cache Mechanisms, Structures, and Parsers present for Google Chrome and Mozilla Firefox. To achieve this, a thematic literature review will be conducted and will follow a defined structure.  
Initially, an overview of the different branches of forensics will be provided, followed by a critical review of literature surrounding HTTP and the HTTP Caching Mechanisms. After this, existing literature surrounding Private and Portable Web Browsing Capabilities will be critically analysed to provide an insight into how these capabilities may affect the availability of browser cache. Finally, the thematic literature review critically analyses literature surrounding the caching mechanisms, structures, and publicly available parsers for both Google Chrome and Mozilla Firefox, providing the foundational knowledge needed for the experimental methodology.  
In doing this, the literature review explores the problem, summarises relevant theory, and reviews existing work. 
2.2 Forensic Science, Digital Forensics, and Browser Forensics 
Defined by Afridi (2021), forensic science is an investigatory tool used in criminal investigations to enable the analysis of evidence through the application of scientific knowledge and methodologies. 
Linking this to digital forensics, Hughes et al. (2021) and Sadiku, Tembely, & Musa (2017) describes digital forensics as a branch of forensic science that involves the identification, collection, and examination of digital data used in criminal investigations to help investigate cybercrimes and identify evidence relating to these crimes. 
Jadhav & Meshram (2018) and Suma, Dija, & Pillai (2017) identify that browser forensics plays a crucial role in performing digital forensics during a criminal investigation. Both sources state that browser forensics is the process of collecting forensic evidence left by a user’s web browsing activity. 
2.3 Hypertext Transfer Protocol (HTTP) and HTTP Caching 
2.3.1 The Hypertext Transfer Protocol 
As covered by Mozilla (2022) in an article on the evolution of HTTP, Tim Berners-Lee developed the first version of HTTP between 1989 and 1991. This was originally used to exchange documents over the internet using a simple web browsing client. 
Defined by Berner-Lee, Fielding, & Frystyk (1996), HTTP/1.0 provided the foundational elements which included status codes to recognise success or failure, HTTP headers that allowed for the exchange of additional client/server information, and the first ever caching mechanism. 
Shortly after this, HTTP/1.1 was introduced and since its introduction, HTTP/1.1 has been continuously refined and developed for over 20 years. 
In the latest internet standard for HTTP, Fielding, Nottingham, & Reschke (2022a) define HTTP/1.1 as being a request/response protocol that is used for exchanging messages across an established connection. During this, the client constructs HTTP request messages with different headers to communicate and retrieve resources held by the server (Figure 2). Then, the server acts on these requests and responds by sending back a HTTP response message containing a status code, additional response metadata, and the requested resource’s content (Figure 3). 
 
Figure 2 – Client HTTP GET Request - (Fielding, Nottingham, & Reschke, 2022a) 
 

Figure 3 – Server HTTP Response - (Fielding, Nottingham, & Reschke, 2022a) 
2.3.2 HTTP Caching Mechanisms 
As previously mentioned, HTTP/1.0 first introduced the concept of cache. Defined by Berner-Lee, 
Fielding, & Frystyk (1996), cache is “A program’s local store of response messages and the subsystem that controls its message stored, retrieval, and deletion. A cache stores cachable responses to reduce the response time and network bandwidth consumption on future, equivalent requests.”  
To understand what influences the HTTP caching mechanisms, Berner-Lee, Fielding, & Frystyk 
(1996) explain that HTTP/1.0 originally used the “Pragma” header field to control the HTTP cache. However, this changed in HTTP/1.1, where additional cache control mechanisms were introduced to allow for better control. Fielding, Nottingham, & Reschke (2022b) defines these cache control mechanisms as a way for a server or client to explicitly define cache controls using the “cachecontrol” header and its subsequent directives. These directives override the default caching mechanism and effect the way that resources may be cached on a user’s system (Figure 4). 
 

Figure 4 – Cache Response and Cache Request Directives - (Fielding, Gettys, Mogul, H, & Berners-Lee, 1997) 
Alongside these internet standards, Sawicki, Zych, & Sawicki (2021) perform an analysis into the current security status of the local HTTP caching mechanisms. During this, they find that the improvement in efficiency caused by cache is achieved through storing the requested static resources of a webpage (e.g., images, and media) in a location that is more accessible for the client. Thus, the cache mechanisms store the responses containing the static resources locally so they can be re-used again in response to later requests (Figure 5 and Figure 6). 
 

Figure 5 – Example of the first request sent being cached by the client’s web browser. 
Figure created by author using (diagrams.net, 2023). 
 

Figure 6 – Example of the same request being performed; this time being fetched from the browser’s local cache. 
Figure created by author using (diagrams.net, 2023). 
Supporting the research into HTTP cache conducted by Sawicki et al. (2021), Nguyen, Lo Iacono, & Federrath (2019) analyse the individual cache properties in more detail. In doing this, they identified that the “Cache-Control” header of a HTTP Response and Request can have a direct impact on how the cache is stored on a user’s local system. When coupled with the ‘no-store’ directive, this will prevent the cache from storing requested content. 
The research performed by Nguyen et al. (2019) and Sawicki et al. (2021) is based on RFC 7234, which as of July 2022 obsolete and has been replaced by RFC 9111. However, both sources still accurately outline and emphasise the main concepts of HTTP caching which are relevant to this project. 
Relating these caching concepts to browser forensics, Horsman (2018a) elaborates on the importance of HTTP cache and its ability to reveal cached resources of webpages that users have previously visited. Therefore, this makes understanding cache and what affects the cache critical, as it is a vital source of evidence in digital forensics. 
2.4 Portable and Private Web Browsing Capabilities 
Following on from understanding HTTP and HTTP caches, this section aims to highlight how the private and portable browsing capabilities of a web browser can drastically affect the digital forensics process by reducing the number of forensic artefacts available on a user’s system. 
2.4.1 Overview of Private Web Browsing Capabilities 
As defined by Horsman et al. (2019), private browsing capabilities allow a user to minimise the amount of evidence stored on their devices that contain information relating to their web browsing activities.  
Hasan et al. (2021) and Hughes et al. (2021) identified that the growth of private browsing modes began in the early 2000’s due to the growing concern of user privacy when browsing the internet. Safari was at the forefront of this when in 2005 it became the first web browser to offer extensive user privacy through disabling certain features that were tracking the user’s browsing activities. 
Other web browsers sought competitive parity and began to implement their own private browsing modes. Today, privacy browsing modes are embedded within almost any publicly available web browser, each with their own implementation. 
Using Google Chrome and Mozilla Firefox as an example, Chrome supplies “Incognito Mode” and Firefox supplies “Private Browsing” mode. 
Google (2022) states: “When you browse privately, other people who use the device won’t see your history. Chrome doesn’t save your browsing history or information entered in forms. Cookies and site data are remembered while you’re browsing but deleted when you exit Incognito mode. You can choose to block third-party cookies when you open a new incognito window.” 
Additionally, Mozilla (2022) states: “Private Browsing does not save your browsing information, such as history and cookies, and leaves no trace after you end the session.” 
However, both browsers highlight the fact that a users’ browsing activity might still be visible, and that it does not make you completely anonymous on the Internet. Entities such as ISPs, Websites, or Employers may still be able to record a users’ browsing activity.  
Supporting this, Hughes et al. (2021) investigated different browsers’ private modes to identify whether the browsers’ actually offer any additional privacy to their users. During their research, they investigate the private browsing modes of Google Chrome, Mozilla Firefox, Brave, and Microsoft Edge using both disk and memory forensics. Based on the results, they discussed that even with browser privacy features enabled, this does not always guarantee privacy. Their results also showed that Google Chrome offered the most privacy to its users through less browser artefacts being left behind when using Incognito Mode. 
2.4.2 Overview of Portable Web Browsers 
As well as supporting previous definitions of private browsing, Flowers et al. (2016) and Hariharan, Thakar, & Sharma (2022) cover the concept of portable web browsers through analysing which artefacts are present when using portable web browsers. 
Both identify portable browsers as being a browser application that is stored and ran from an external storage device (such as a USB stick). These portable browsers claim to provide added user privacy through storing its browser files on the external storage device that the browser was originally run from, leaving no trace on the user’s host system. 
As mentioned by Hariharan et al. (2022), this can prove challenging for forensic investigators when they want to recover browser files to identify a user’s browsing activities. If the external device that the browser was executed from cannot be obtained, then theoretically, obtaining the files needed to extract cached webpage resources from a user’s browsing sessions is infeasible. 
2.4.3 Past Investigations into Private and Portable Web Browser Capabilities 
When investigating the impact private browsing modes has on the availability of forensic artefacts, 
Nelson, Shukla, & Smith (2019) investigate the forensic artefacts stored on a user’s system when using the private browsing modes of Google Chrome and Mozilla Firefox. Whereas Flowers et al. (2016) investigate whether the claims of privacy through portable web browsers are true by investigating artefacts left by portable browsers, and their private browsing modes. 
One downside to their research is that they both use outdated versions of each browser. Nelson, Shukla, & Smith (2019) use a version of Google Chrome which was released in September 2017, and a version of Mozilla Firefox released in August 2017. While Flowers et al. (2016) use a version of Google Chrome released in March 2015, and a version of Mozilla Firefox released in February 2015. 
Horsman et al. (2019) highlighted this risk by stating that research into the private browsing capabilities of web browsers must be continuous as the vendors are constantly evolving their implementations to enhance user experience. Thus, suggesting that older versions of the software may differ to the newer versions. 
Even though their research is outdated, the results of their investigation can still be used reflect on the affect private and portable web browser capabilities might have on the availability of browser artefacts. 
2.4.4 Google Chrome – Incognito Mode and Chrome Portable 
During their research, Nelson et al. (2019) found that there were some differences in the number of files stored, and more specifically, the file content that was stored between the normal and private browsing modes of Google Chrome (Figure 7 and Figure 8). 
 

Figure 7 – Google Chrome normal browsing mode – (Nelson, Shukla, & Smith, 2019) 
 

Figure 8 – Google Chrome Incognito Browsing mode – (Nelson, Shukla, & Smith, 2019) 
When investigating the content of these recovered artefacts, Nelson et al. (2019) found that some of the recovered file’s contents was missing. Therefore, they produced a table to summarise the difference in extracted data between normal and private browsing modes (Figure 9). 
 

Figure 9 – Extracted Chrome Data – “X” indicates this information was able to be extracted, “-“ means this information was not able to be extracted (Nelson, Shukla, & Smith, 2019). 
In support of the investigation conducted by Nelson et al. (2019), Flowers et al. (2016) investigated the forensic artefacts available after using the private and portable capabilities of Google Chrome, with parts of their investigation focusing on chrome cache files. 
Flowers et al. (2016) found that Chrome Portable temporarily stored its cache files on the hard drive rather than the USB stick. However, when the USB had been removed, these cache files were removed from the hard drive. 
Overall, the results from their investigation showed that in both private and portable browsing modes, no cache files were able to be located on the user’s local system (Figure 10 and Figure 11). 
 

Figure 10 – Artefacts extracted from different browsers running in private mode – (Flowers, Mansour, & Al-Khateeb, 2016) 
 

Figure 11 – Artefacts extracted from different portable browsers running in normal mode – (Flowers, Mansour, & AlKhateeb, 2016) 
2.4.5 Mozilla Firefox – Private Browsing and Firefox Portable 
Moving onto Firefox, Nelson et al. (2019) found that the user’s hard drive had more unallocated space after using Private Browsing, compared to the unallocated space after normal browsing. This suggests that files may not have been saved during the private browsing session, or that the files were removed once the session had finished. 
Building on these findings, Figure 12 shows the results of the investigation undertaken by Nelson et al. (2019) for Mozilla Firefox. 
 

Figure 12 – Firefox artefact recovery and location – (Nelson, Shukla, & Smith, 2019) 
Elaborating on the Private Browsing mode offered by Firefox, Flowers et al. (2016) observed that Firefox performed clean-up operations which manipulated Firefox cache files once the private browsing session had finished (Figure 10).  
In addition to this, Flowers et al. (2016) also observed the effect Firefox portable had on the availability of cache files on the users’ host system, claiming that there was very little evidence of cache files present (Figure 11). 
 
 	 
2.5 Web Browser Cache Mechanisms and Structures 
Even with the availability of browser cache dependent on whether portable or private browsing modes have been used, browser cache is still a vital forensic artefact that every forensic investigator should aim to acquire and analyse. 
As stated by Gupta, Varol, & Zhou (2023) during their investigation into Discord, this acquisition of browser cache can lead to the recreation of web page content, the same way that a suspect may have viewed the content. Therefore, it’s important to explore the ways different browsers cache web page content and understand how this information can be extracted. 
2.5.1 Comparison of the Caching Mechanisms for Google Chrome and Mozilla Firefox 
Starting with Google Chrome, Hassan (2019) recognises that the architecture of Google Chrome is inherited from Chromium, which is an open-source browser project by Google. Chromium is used by a wide range of modern browsers and implements its own cache mechanism for storing browsing data, known as Disk Cache. This caching mechanism is consistent across all applications that use Chromium as its foundation, and thus, parsing the cache files of different Chromium-based applications should remain consistent. 
During their investigation into the Discord application, Iqbal, Motylinski, & MacDermott (2021) confirm this theory by showing that Discord inherits its caching structure from Chromium’s Disk Cache. Therefore, it’s evident that if different applications are using the same underlying caching mechanism, the parsing of the cache files is to be identical. 
Moving onto Mozilla Firefox, Hassan (2019) states that Firefox is a completely free and opensource browser that is developed and supported by Mozilla. This is helpful because it offers transparency in its underlying mechanisms and browser functionality. Yet, even with Mozilla 
Firefox being completely open source, there’s less academic material on its latest caching mechanism compared to chrome. 
As covered in the change logs, Mozilla (2014) released Version 32.0 which introduced a new HTTP caching mechanism (cache2). This delivered improved performance and different caching structures compared to the first version. 
With Firefox using its own caching mechanism instead of using Chromium’s Disk Cache like Google Chrome, it’s evident that the cache files of both browsers will need parsing separately, as the cache structures may differ. However, the open-source nature of both browser’s makes this analysis easier, as the source code can be reviewed to find the respective browser’s cache structure. 
2.5.2 Comparison of the Cache Structure’s for Google Chrome and Mozilla Firefox 
Using existing research to explore the structure of Google Chrome’s cache, Suma, Dija, & Pillai (2017) perform an in-depth analysis of the browser’s cache files. In doing this, they identify the information needed to parse and extract the cache files located on a user’s system. 
Furthermore, Firefox cache2 research conducted by Habben (2015) will be used to explore the foundations of Firefox’s cache structure and draw comparisons in the difference between the cache structures of the two web browsers. 
2.5.2.1 Cache Folder Comparison 
To compare how the cache folders for Google Chrome and Mozilla Firefox differ, Figure 13 shows each of the browser’s cache folders side by side, with Chrome on the left, and Firefox on the right. 
Supporting this, Table 3 identifies the similarities and differences between the cache folder’s contents.  

Figure 13 - Google Chrome's cache folder (left) provided by (Suma, Dija, & Pillai, 2017) and Mozilla Firefox's cache folder (right) provided by (Habben, 2015). 
 
 
 
 
 
Table 3 – Table comparing the similarities and differences between the cache folder contents for Google Chrome and Mozilla Firefox - (Habben, 2015; Suma, Dija, & Pillai, 2017)  
	Similarities 
	
	Differences 

	File Name 
	Description 
	File Name 
	Description 

	Index File 
 
	The index files for Chrome and Firefox have the same role - they point to the cached content.  
Chrome’s index file does this through cache addresses that point to cache entries located in one of the four data files. 
Whereas Firefox’s index file stores records for each of the entry files located in the “entries” folder. 
The index file structure also differs between Chrome and Firefox. 
	Data Files 
External Files 
	Found in Chrome’s cache folder, these files contain the cache information. 
The data files (also known as block files) hold the cached data in structures known as cache entries. Whereas the external files are used to store the cached data if the data exceeds a certain size. 

	
	
	Entry Files 
	Found in Firefox’s cache folder, these files hold all the cached data. 
This differs to Chrome because it does not fragment the cached data across multiple files. 


 
2.5.2.2 Google Chrome’s Cache File Structures 
Diving deeper into the structure of the browser’s cache files, Suma et al. (2017) not only outlines each of the file’s individual structure, but also their relationship with each other.  
Suma et al. (2017) noted that the index file is split into three parts: the Index header, the Last Recently Used (LRU) data, and the Index Hash Table. The sections of most interest being the index file’s header and hash table, where the hash table contains the cache addresses that point to cache entries located inside one of the four data files. 
However, when comparing their findings to the official source code, it’s evident that the research performed by Suma et al. (2017) is outdated. Table 4 takes the index file structure as defined by Suma et al. (2017), and performs a side-by-side comparison using the structures defined in the source code provided by Chromium (2022a). 
Table 4 – Comparison of Chrome’s index file structure - red names indicate fields that weren’t present in the research conducted by Suma et al. (2017), but were included in the official source code provided by Chromium (2022a) 
	Comparison of Chrome’s Index File Structure 

	(Suma, Dija, & Pillai, 2017) 
	(Chromium, 2022a) 

	Name 
	Size (Bytes) 
	Name 
	Size (Bytes) 

	Signature 
	4 
	magic 
	4 

	Minor Version 
	2 
	version 
	4 

	Major Version 
	2 
	num_entries 
	4 

	Number of Entries 
	4 
	old_v2_num_bytes 
	4 

	Data Size 
	4 
	last_file 
	4 

	Last Created File Number 
	4 
	this_id 
	4 

	Unknown 
	8 
	stats 
	4 

	Table Size 
	4 
	table_len 
	4 

	Unknown 
	8 
	crash 
	4 

	Created Time 
	8 
	experiment 
	4 

	Padding 
	208 
	create_time 
	8 

	LRU 
	112 
	num_bytes 
	8 

	Hash Table 
	~ 
	padding 
	200 

	 
	LRU 
	112 

	
	Hash Table 
	~ 


 
As previously mentioned, cache addresses are stored in the index file’s hash table to point to cache entries located in chrome’s data files. Identified by Suma et al. (2017), the process to parse these cache addresses involves complex calculations which adds additional overhead to the overall parsing process of chrome’s cache files. When compared to Chrome’s source code, the structure of the cache addresses hasn’t changed, and the research conducted on them remains the same (see Appendix A for the latest cache address structure). 
Following on from this, the research performed by Suma et al. (2017) on chrome’s data files shows that the data files consist of two sections; a file header, and an array of data blocks which contain cache entries. Again, this research is outdated because it differs to the structure of chrome’s cache entry defined in the official source code. Table 5 performs a side-by-side comparison of chrome’s cache entry structure. 
Table 5 - Comparison of Chrome’s cache entry structure - red names indicate fields that weren’t present in the research conducted by Suma et al. (2017), but were included in the official source code provided by Chromium (2022a) 
	Comparison of Chrome’s Cache Entry Structure 

	(Suma, Dija, & Pillai, 2017) 
	(Chromium, 2022a) 

	Name 
	Size (Bytes) 
	Name 
	Size (Bytes) 

	Hash Number 
	4 
	hash 
	4 

	Next Cache Address 
	4 
	next 
	4 

	Cache Entry State 
	4 
	rankings_node 
	4 

	Creation Time 
	8 
	reuse_count 
	4 

	Key Data Size 
	4 
	refetch_count 
	4 

	Long Key Data Cache Address 
	4 
	state 
	4 

	Data Stream Size Array 
	16 
	creation_time 
	8 

	Data Stream Cache Array 
	16 
	key_len 
	4 

	Key Data (URL) 
	~ 
	long_key 
	4 

	 
 
 
 
 
 
	data_size 
	16 

	
	data_addr 
	16 

	
	flags 
	4 

	
	padding 
	16 

	
	self_hash 
	4 

	
	key 
	928 


Furthermore, Suma et al. (2017) also identified that cached data can be fragmented across multiple cache files. This is proven in the “next” and “long_key” fields which hold a cache address pointing to the location of its actual cache data. The “Data Stream Cache Array” also contains embedded cache addresses that need to be parsed to retrieve the HTTP response and cached webpage resource data. Ultimately, this additional processing increases the overall complexity of parsing Chrome’s cache files. 
2.5.2.3 Mozilla Firefox’s Cache File Structures 
Reassuringly, the research conducted by Habben (2015) reveals that Firefox cache2 is much simpler than Chromium’s Disk Cache as it requires less processing to extract and parse the cache files. 
Starting with the index file, Habben (2015) identified that the file is split into two parts: the index file’s header and individual records. In comparison to the Firefox source code, the research conducted by Habben (2015) is also outdated and new structures have been defined. Table 6 and Table 7 performs a side-by-side comparison of Firefox’s index file’s structures. 
Table 6 – Comparison of Firefox’s index file’s header structure - red names indicate fields that weren’t present in the research conducted by Habben (2015), but were included in the official source code provided by Searchfox (2022) 
	
	Comparison of Firefox’s Index File’s Header Structure 

	
	(Habben, 2015) 
	(Searchfox, 2022) 

	Name 
	
	Size (Bytes) 
	Name 
	Size (Bytes) 

	Version 
	
	4 
	mVersion 
	4 

	Last Modified 
	
	4 
	mTimeStamp 
	4 

	Dirty Flag 
	
	4 
	mIsDirty 
	4 

	 
	
	mKBWritten 
	4 


 
 
 
 
Table 7 – Comparison of Firefox’s index file’s record structure - red names indicate fields that weren’t present in the research conducted by Habben (2015), but were included in the official source code provided by Searchfox (2022) 
	Comparison of Firefox’s Index File’s Record Structure 

	(Habben, 2015) 
	(Searchfox, 2022) 

	Name 
	Size (Bytes) 
	Name 
	Size (Bytes) 

	Hash of URL 
	20 
	mHash 
	20 

	Frecency 
	4 
	mFrecency 
	4 

	Expiration Date 
	4 
	mOriginAttrsHash 
	8 

	AppID 
	4 
	mOnStartTime 
	2 

	Flags 
	1 
	mOnStopTime 
	2 

	File Size 
	3 
	mContentType 
	1 

	 
	 
	mFlags 
	4 


 
Moving onto Firefox’s individual entry files, Habben (2015) suggested that the entry files are again split into two sections: the original cached webpage resource data, and the metadata from the server. To begin processing the metadata, Habben outlined the additional calculations required to find the starting offset of the metadata header. However, when processing the metadata header, the structure identified by Habben differed to the structures defined in Firefox’s source code. 
Table 8 takes the metadata header structure defined by Habben (2015), and performs a side-byside comparison using the structure defined in the source code provided by Searchfox (2021). 
Table 8 – Comparison of Firefox’s entry file metadata header structure - red names indicate fields that weren’t present in the research conducted by Habben (2015), but were included in the official source code provided by Searchfox 
(2021) 
	
	Comparison of Firefox’s Entry File Metadata Header Structure 

	
	(Habben, 2015) 
	(Searchfox, 2021) 

	Name 
	
	Size (Bytes) 
	Name 
	Size (Bytes) 

	Version 
	
	4 
	mVersion 
	4 

	Fetch Count 
	4 
	mFetchCount 
	4 

	Last Fetched Data 
	4 
	mLastFetched 
	4 

	Last Modified Date 
	4 
	mLastModified 
	4 

	Frecency 
	4 
	mFrecency 
	4 

	Expiration Date 
	4 
	mExpirationTime 
	4 

	Key Length 
	4 
	mKeySize 
	4 

	URI 
	~ 
	mFlags 
	4 

	 
	 
	URI 
	~ 


 
Lastly, the metadata elements come directly after the metadata header. As mentioned by Habben (2015), these metadata elements are delimited by null bytes and provide key information of interest, such as the HTTP request and response data. 
2.5.2.4 Summary 
To conclude the cache structures of Chrome and Firefox, the cache structures of Firefox cache2 seems to be less complex when compared to Chromium’s Disk Cache. In Firefox, information relating to the cached content is stored in its own entry file. Whereas in Chrome, this information could be spread across multiple data files or external files and requires cache addresses to be processed before locating the cached data.  
2.5.3 Cache Parsers for Google Chrome and Mozilla Firefox 
When it comes to the parsing of disk cache using the analysis performed by Suma et al. (2017), a range of tools have been built. 
ChromeCacheView is a tool developed by NirSoft (2022a), and is used to view and extract the stored local cache for Google Chrome. Alongside this tool, NirSoft (2022b) developed MZCacheView, which is a tool that views and extracts the local cache folder for Mozilla Firefox on Windows. 
These two tools are arguably the most recognised within the forensic community, with Horsman 
(2018b) mentioning ChromeCacheView’s importance in facilitating the parsing and extraction of Chrome cache folders during their investigation into the reconstruction of live-streamed video content. The advantage of using these tools is that they are continuously being developed, with the latest versions of each being released in 2022 and come with the ability to extract the cache files of Google Chrome and Mozilla Firefox on demand. 
Iqbal, Motyliński, & MacDermott (2021) support Horsman (2018b) by claiming that 
ChromeCacheView is currently the best solution available for the forensic analysis of Chromium 
Disk Cache. However, Iqbal, Motyliński, & MacDermott (2021) also identify the tool’s limitations during their experimentation, which Horsman (2018b) does not do. These limitations include an incomplete extraction of cached webpage resources, alongside an apparent inability to produce a report on the recovered data. 
2.6 Summary 
To summarise, this thematic literature review provided an insight into the different branches of forensics and critically reviewed literature surrounding HTTP, HTTP Caching Mechanisms, and Portable and Private Web Browsing Capabilities. Additionally, this review explored the cache mechanisms of two different windows-based browsers: Google Chrome and Mozilla Firefox. It was found that HTTP caching store resources such as images, videos, metadata, and URLs which can be extracted during digital forensics to uncover the user’s browsing activities. However, the use of portable and private web browsing capabilities directly impacts the availability of browser cache, further presenting challenges when extracting the cache. 
When developing the cross-browser cache parser, theories and models from the reviewed literature will be taken forward into the methodology to help inform the project’s experiment methods. These theories and models include the cache mechanisms of Google Chrome and Mozilla Firefox, their individual cache structures so that all relevant cache information can be extracted, and the relationships between the browser’s cache files so that each file can be parsed. 
Lastly, the MVP Cross-Browser Cache Parser, ChromeCacheView, and MZCacheView are evaluated to determine the performance and capabilities of each cache parser. This evaluation will aim to test the limitations previously identified in the literature review, such as testing the number of cached webpage resources recovered, the amount of cache information extracted, and any reporting capabilities present.  
3. Methodology 
3.1 Introduction 
To contribute towards the project’s aim of developing an MVP cross-browser cache parser for the latest, windows-based versions of Google Chrome and Mozilla Firefox, literature has been critically analysed to explore the browser’s cache structures and inform the methods. 
This methodology will set out the methods that will need to be applied to achieve this aim, while also considering any quality issues by preserving reliability and validity, minimising error, and bias, and addressing any ethical considerations 
The literature review methods outline the processes which have been followed to select the sources used within the review. Project management methods are then discussed, where separate management methods are identified for the development of the cache parser. Afterwards, the experiment method defines the requirements of the cache parser, alongside processes that will be used to develop the cache parser’s functionality and create the data used in the evaluation. Finally, the evaluation methods then outline the processes that will be taken to evaluate the cache parser’s performance and capabilities.  
3.2 Quality Issues 
It is important that throughout the project, reliability and validity are preserved, bias and error are minimised, and ethical considerations are addressed. 
3.2.1 Reliability 
Reliability will be preserved by ensuring that steps are taken to allow others to repeat the experiment and achieve the same results. These steps include documenting and displaying the processes that will be followed for the development of the MVP cache parser, the generation of the test data, and the evaluation of the cache parsers.  
Moreover, replicating the data generated in the experiment is infeasible due to changing webpage content and adverts. Therefore, any conclusions made using the test data will keep this in mind, and the test data can be made available on request. 
More details on the actions that are to be taken to consider reliability in each of the methods, can be found in Appendix B.  
3.2.2 Validity 
Furthermore, validity will be preserved by ensuring that the evaluation metrics and results accurately reflect the project’s aim of developing an MVP cross-browser cache parser. This will be achieved by selecting metrics which accurately evaluate and reflect, both the performance and capabilities of the cache parsers, qualitatively and quantitatively. 
3.2.3 Error 
To minimise the risk of error, a variety of error handling practices must be incorporated into the cache parser to ensure continuous execution if unexpected situations arise. This includes guaranteeing that the parser can handle invalid user inputs from the command line. 
Further details on the actions taken to minimise the risk of error can be found in Appendix C. 
3.2.4 Bias 
Due to ethical and privacy concerns, real-world data cannot be used during the evaluation of the cache parser. Therefore, the data will need to be self-generated which causes bias in the data as it may not be representative of the cache files found in real-world scenarios. To reduce the impact of this bias, the data generation process will be kept in mind when drawing conclusions, and the process taken to generate the test data will be documented to allow a better understanding of the results relative to the self-generated data. 
More details on the actions that will be taken to account for bias can be found in Appendix D.  
3.2.5 Ethical Considerations 
Finally, a variety of steps to address ethical concerns related to the project have been identified. As previously explained, the parser will be tested on self-generated data. Since the cache parser is an MVP, and there are no plans to publicly release the parser, the use of self-generated data creates no major ethical concerns. However, if the project is to be developed and taken further to the point of publishing, then significant ethical and legal issues around user privacy need to be addressed. This should involve consulting the appropriate legal statutes (Computer Misuse Act 1990, Data Protection Act 2018, and Investigatory Powers Acts 2016) and checking the legal status of the parser with the appropriate legal teams. 
3.3 Literature Review Methods 
The thematic literature review was carried out with the aim of discovering literature which provided the reader with a clear understanding of browser cache concepts, which are also fundamental to the cache parsers development. 
The review was carried out following the summarised process outlined below: 
1. Reputable repositories, listed in Appendix E, were searched for using the keywords listed in Appendix F to refine the search results to specific topics of interest. 
2. In most cases, these results were then filtered further to restrict the results to recently published work (2018 onwards). 
3. The refined and filtered results were then analysed and triaged by topic relevance and validity. 
Figure 14 outlines the process which was used to analyse and select sources in greater detail. 
 
Figure 
14
 
–
 
Literature review source selection process.
 

Figure created by author using (diagrams.net, 2023). 
3.4 Project Management Methods  
For the management of the overall project, a Gantt chart has been adopted due to its projectspecific, linear structure, shown in Appendix G. As described by Dori & Sharon (2017), a Gantt chart is a graphical model that allows for the planning, co-ordination, and tracking of projects. This is ideal for this project as it allows for the scheduling of tasks that are required to achieve the project’s objectives defined in Section 1.4. 
For the development of the cross-browser cache parser specifically, there are a variety of project management methods that could be adopted. Based on the comparison of prioritisation techniques performed by AlexSoft (2019), the MoSCoW framework has been identified and selected as the chosen project management method. 
MoSCoW is part of the DSDM agile method defined by the Agile Business Consortium (2014) and is described as a prioritisation technique to help understand and manage project priorities. It will help to prioritise the cross-browser cache parser’s requirements by splitting each requirement into separate categories, which are detailed further in Appendix H.  
3.5 Experiment Method 
3.5.1 Introduction 
To achieve the aim of the project, which is to develop an MVP cross-browser cache parser, the process summarised below will be followed. This process will incorporate the previously identified quality issues, the aims and objectives of the project, and the MoSCoW requirements that will be identified for the development of the cache parser. 
1. Identify the cache parser’s MoSCoW requirements. 
2. Define processes that will be used for the development of the cache parser. 
3. Generate the test data that will be used to evaluate the performance of the MVP and other chosen cache parsers. 
3.5.2 Cache Parser MoSCoW Requirements 
Combining the MoSCoW prioritisation technique and the limitations of publicly available cache parsers identified in the literature review, Table 9 defines the categorised requirements for the MVP cross-browser cache parser. 
Table 9 – Cache Parser MoSCoW Requirements 
	Category 
	Requirement 

	Must Have 
	Multi-browser Cache Identification and Parsing Mechanisms 

	
	Cache Recovery Mechanism 

	Should Have 
 
	CLI Integration 

	
	Reporting Mechanism 

	Could Have 
 
	Modular, Accessible, and Portable Code 

	
	Error Detection and Handling 

	Won’t Have 
	Additional Browser Support 


 
3.5.3 Cache Parser Development  
To develop the MVP cross-browser cache parser, the Python programming language will be used alongside the libraries defined in Appendix I. Python has been selected because of previous experience developing with the language, alongside its extensive community and compatibility with other applications. 
For each of the MoSCoW requirements defined above, a brief explanation on how each requirement will be implemented in the cache parser’s code will be provided, alongside the specific processes that will be followed defined in the appendices. 
3.5.3.1 (Must Have) – Multi-Browser Cache Identification and Parsing Mechanism 
Firstly, the cache parser must be able to identify the presence of Google Chrome and Mozilla Firefox on a system, using the following simplified process: 
1. Recursively iterate the inputted cache directory. 
2. Use a regular expression to identify the cache folders of Chrome and Firefox. 
For more details on the full process and regex used, see Appendix J. 
The parser must then process and parse each of the cache files for Chrome and Firefox to extract all the cache information. 
 
For Chrome, the parser will follow the summarised process defined below: 
1. Check if Chrome’s index file exists. If it does: 
a. Open Chrome’s index file and process the cache addresses found in the hash table. 
b. Use cache addresses to locate cache entries. 
c. Extract the cache information held in each cache entry. 
d. Collate the extracted cache information so it’s ready for reporting. 
2. Otherwise, log an error. 
Moving onto Firefox, the parser will follow the summarised process defined below: 
1. Check if Firefox’s index file exists.  
a. If it does exist, then extract cache records from index file and move on. 
b. If it does not exist, then just move on. 
2. Iterate through Firefox’s cache entry folder. 
3. Parse each entry individually, extracting the stored cache information. 
4. Collate the extracted cache information so it’s ready for reporting. 
More details on the processes that will be taken by the cache parser to parse Chrome’s cache files can be found in Appendix K, and Appendix L for Firefox’s cache files. 
3.5.3.2 (Must Have) – Cache Recovery Mechanism 
Once all cache files have been parsed, the cache parser must then be able to recover and recreate the original webpage resources that were cached by the browser. 
To do this, the cache parser needs to be able to extract the raw bytes from the cache file and determine the method used to compress the data. The parser must then identify the extension type for the cached webpage resource and output it to the filesystem with a unique filename.  
For more details on the full process that the cache parser will follow, see Appendix M.  
3.5.3.3 (Should Have) – CLI Integration 
After the “must have” requirements are complete, the parser should then be improved to prompt and handle any command line arguments inputted by the user. This would significantly improve the accessibility and usability of the cache parser. 
To do this, the parser should make use of the “argparse” Python library to initialise a range of arguments which the user can use to customise the execution of the parser. Then, the parser should retrieve the user inputted values and perform verification checks to ensure that the inputs remain valid. 
More details on the process the cache parser will take to integrate CLI can be found in Appendix N. 
3.5.3.4 (Should Have) – Reporting Mechanism 
Alongside CLI integration, the cache parser should be able to collate all information extracted from the browser’s cache files and format it appropriately so that it can be reported on. This mechanism would significantly improve the usability by allowing users to select their preferred report formats. 
The cache parser will follow the simplified process defined below: 
1. Retrieve the report formats specified by user via command line. 
2. Collect all extracted information from the browser’s cache files. 
3. Output all information to the specified report formats. 
See Appendix O for more details on the full process that the cache parser will use to implement the reporting mechanism. 
3.5.3.5 (Could Have) – Modular, Accessible, and Portable Code 
With the basic functionality implemented, improving the code to be modular and accessible would help the scalability of the program by allowing future modules to be added with ease. 
To develop modular code, object orientation (OO) will be used to structure the code into separate classes where specific functionality can be re-used between the parsing of Chrome and Firefox. See Appendix P for more details regarding the structure of the cache parsers code. 
Moreover, version control will be implemented by storing the code on GitLab to allow code changes to be documented as the cache parser evolves. Similarly, Google’s style guide for python will be adopted to further manage the accessibility of the code by ensuring consistency across all code components. 
Finally, the complete MVP cache parser will use “PyInstaller” to convert the code into a single executable file so that all libraries and code components are bundled into one, improving the overall portability of the cache parser. 
3.5.3.6 (Could Have) – Error Detection and Handling 
Alongside code styling, appropriately handling any errors would increase the parser’s resilience and improve the user’s overall experience. Therefore, common practices such as exception handling and logging will be used to catch and report on errors, with built-in tests used to catch anomalies. 
3.5.3.7 (Won’t Have) – Additional Browser Support 
Finally, due to a lack of resources, time constraints, and the nature of MVP, adding support for additional browsers such as Brave or Safari won’t be implemented. However, this does not mean these can’t be visited later for future work. 
3.5.4 Data Generation 
Once the development is complete, the process behind generating the test data used for the evaluation can begin and will follow the processes defined below. 
3.5.4.1 Environment Configuration Process 
To generate the test data, two virtual environments are created. The first environment is used to generate the test data, and the second is used to download the standard installers for the browsers. 
Separate virtual environments are used to prevent contaminating the data generation environment with cache files created when downloading the browser’s standard installers. Additionally, the installers are only downloaded from the official Firefox and Chrome sources to avoid downloading potentially malicious versions. 
For more details on the environment set-up process and the environment specifications, see Appendix Q. 
Once the standard installers for the browsers have been downloaded, they can be transferred onto the data evaluation environment and installed using the standard installation process, defined in Appendix R. 
3.5.4.2 Data Generation Process 
With the data generation environment created, Figure 15 defines the process that will be taken when generating the test data for the evaluation. 
 
 

Figure 15 – Flowchart defining the process taken to generate the cache files used during the evaluation of the cache parser tools. 
Figure created by author using (diagrams.net, 2023). 
Supporting this, different webpages have been selected based on the variety of webpage content which would get cached upon visiting the webpage. For more details on the specific webpages selected, see Appendix S. 
3.6 Evaluation Methods 
Using the test-data generated, the performance and capabilities of the MVP cross-browser cache parser will be evaluated against two publicly available cache parsers.  
This section will outline the process that will be taken to quantitatively evaluate the performance of the cache parsers using performance metrics, alongside questions that will be used to qualitatively evaluate their capabilities. 
3.6.1 Selected Cache Parsers 
To assist in the evaluation of the MVP cache parser, the evaluation of two other parsers created will also be performed so that their capabilities and performance can be compared. 
Table 10 defines the two publicly available cache parsers selected for the evaluation. 
Table 10 – Publicly available cache parsers selected for the evaluation. 
	Application 
	
	Version 

	ChromeCacheView 
	2.41 
	

	MZCacheView 
	2.21 
	


 
3.6.2 Performance Metrics Collected 
3.6.2.1 Quantitative Evaluation Process 
For the quantitative evaluation of the cache parsers, the same execution mode will be used for each of the performance metrics. This execution mode tests the cache parser’s ability to identify browser cache files, extract cache information from the browser cache, and recover the cached webpage resources. Subsequently, outputting the recovered resources and an XML report containing the extracted cache information to the filesystem. In addition to this, the cache folders of either Chrome or Firefox will be directly passed to the parsers. 
For more details on the commands and paths which will be used, see Appendix T. 
Using built-in windows applications, a range of performance metrics will be collected from the parser’s during their execution. Each of the metrics have been carefully selected to evaluate the performance of the cache parsers based on their output and effect on the system. The metrics can be seen listed below: 
· Total number of cached webpage resources identified and recovered. 
· Percentage of processor time used by the process. 
· Amount of memory consumed by the process. 
· Total IO data operations per second for the process. 
For more information on the specific metrics collected during the evaluation, see Appendix U. 
3.6.2.2 Qualitative Evaluation Process 
Moving onto the qualitative evaluation, a comparison will be performed based on the cache parser’s features and the cache information which is extracted from the browser’s cache. This is important because even if one parser is less performant than the other, it may still include capabilities which the other does not. 
For the full list of questions that will be used during the qualitative evaluation, see Appendix V. 
3.6.3 Evaluation Process 
For the evaluation process itself, a separate evaluation environment will be created using the process defined in Appendix Q.  
The summarised evaluation process involves: 
· Transferring the test-data (cache files) onto the VM. 
· Collecting all quantitative performance metrics using the tools specified. 
· Performing the comparison for the qualitative evaluation. 
The process to collect the quantitative performance metrics using performance monitor will be repeated 3 times so that averages of each metric can be taken. This is to account for anomalies and improve the reliability of the results. 
More details on the full evaluation process that will be followed can be found in Appendix W, alongside more information on how windows performance monitor has been used during the evaluation in Appendix X. 
3.7 Summary 
To summarise, this methodology has covered the literature review, project management, experiment, and evaluation methods while also considering any quality issues present. Supporting this further, the processes which will be used have been visualised in the forms of flowcharts, and additional details have been included in the appendices where needed. 
4. Results and Discussion 
4.1 Introduction 
To assist in achieving the project’s aim and objectives, this section presents the artefacts and results produced by this project. 
Reflecting on the evaluation process outlined in the methodology, any changes made during the evaluation will be addressed in the changes section, including any limitations these changes have on the results. 
Furthermore, the development of the MVP cross-browser cache parser was vital for this evaluation process. Combining the research conducted in the literature review, and the experiment methods of the methodology, the technical artefacts section provides details on the developed MVP cross-browser cache parser. 
Finally, the quantitative and qualitative results gathered from the evaluation of the cache parsers are then displayed and appropriately analysed in their respective discussions. 
4.2 Changes 
When generating the results, ChromeCacheView and MZCacheView couldn’t output both the cached webpage resources and report at the same time. Therefore, the commands defined in Appendix T were changed to generate the XML reports separately for these cache parsers. On the basis that these cache parsers will only output one less file than the MVP cache parser, it’s unlikely this change will have a significant impact on the results. However, it’s still important to note that the performance metrics collected for ChromeCacheView and MZCacheView won’t include the generation of a report. 
In addition to this, the cache folder path for MZCacheView was changed because it needed the specific Firefox cache entry folder. Fortunately, this didn’t limit the results because the MVP crossbrowser cache parser was able to handle the new cache folder path. 
For more details on the changes made during the evaluation, see Appendix Y. 
 
 
4.3 Technical Artefact – MVP Cross-Browser Cache Parser 
Using the processes defined in the experiment methods, a fully functional MVP cross-browser cache parser has been developed using the Python programming language and includes built-in Chrome and Firefox cache parsing functionality. To support this section, the full code for the MVP cross-browser cache parser can be made available upon request. 
The MVP cache parser is a command-line tool that allows the user to control its capabilities by passing it a variety of arguments, which also contains built-in documentation and will handle any invalid inputs appropriately. The CLI Integration process shown in Appendix N was used to implement this functionality, and further examples of the cache parser’s command-line integration can be found in Appendix Z. 
Upon execution, the cache parser implements the multi-browser cache identification process shown in Appendix J to identify the cache folders for Google Chrome and Mozilla Firefox. Appendix AA shows the code behind this process. Once a cache folder has been identified, the parser uses the processes defined in Appendix K and Appendix L to parse and extract the contents of individual cache files. 
For Chrome, the cache parser relies on parsing the index file first to identify and point to cache entries present in the data and external cache files. However, for Firefox, the cache parser can individually parse Firefox’s cache entry files without an index file being present. For code snippets of these parsing mechanisms, see Appendix AB for Chrome and Appendix AC for Firefox. 
Embedded inside these parsing mechanisms, cache structures are used to extract the information from the cache files. These structures are constructed from the analysis performed in the literature review, where the research conducted by Suma et al. (2017) and Habben (2015) on Chrome and Firefox’s cache structures was compared to the structures defined in the browser’s source code. For an example of how these cache structures are defined in the parser’s code, see Appendix AD. 
The user can also choose to recover the cached webpage resources which are embedded inside the browser’s cache files. When selected, the parser uses the process defined in Appendix M to output the decompressed bytes of the webpage resources. Snippets of code for the overall recovery can be found in Appendix AE. 
When execution is complete, the cache parser outputs a report and log file. The report contains all the extracted cache information so that the user can independently process and analyse the cache information. These reports come in a variety of formats and are created using the process defined in Appendix O. More detail on the parser’s reporting mechanism can be found in Appendix AF. Alongside this report, the log file is part of the parser’s error detection and handling functionality, which contains status messages outputted during execution. Examples of the error handling and log files can be seen in Appendix AG. 
To conclude, the final version of the MVP cache parser integrates all requirements and processes previously defined using the MoSCoW prioritisation framework. From the development process, it was also clear that Chrome and Firefox have very different caching mechanisms which needed to be parsed separately.  
4.4 Quantitative Evaluation 
Starting with the quantitative evaluation, these results reflect the performance of the cache parsers.  
4.4.1 Quantitative Evaluation Results 
Table 11 shows the total number of cached webpage resources identified and recovered when using the MVP cross-browser cache parser, ChromeCacheView, and MZCacheView to parse Chrome and Firefox cache files. 
Table 11 – Quantitative evaluation results showing the total number of cached webpage resources identified and recovered by the MVP cross-browser cache parser, ChromeCacheView, and MZCacheView. 
	Total Number of Cached 
Webpage 
Resources 
	Chrome Results 
	 
 
 
 
	Firefox Results 

	
	MVP Cross-
Browser  
Cache Parser 
(Chrome) 
	ChromeCacheView 
 
	
	MVP Cross-
Browser  
Cache Parser (Firefox) 
	MZCacheView 
 

	 
Identified 
 
	 
522 
	 
522 
	
	 
2108 
	 
2108 

	 
Recovered 
 
	 
501 
	 
497 
	
	 
2064 
	 
2108 


 
Table 12 shows the performance metrics collected from the MVP cross-browser cache parser and ChromeCacheView during the parsing of Chrome cache files (see Appendix AH for the full results) 
Table 12 – Quantitative evaluation results showing the performance metrics collected after using the MVP CrossBrowser Cache Parser and ChromeCacheView to parse chrome cache files. 
	 
	MVP Cross-Browser  
Cache Parser  
(Chrome) 
	ChromeCacheView 

	Average percentage of processor time used 
(%) 
	89.17 
	28.50 

	Average amount memory consumed 
(MB) 
	108.66 
	3.34 

	Average Number of  
IO Read/Write 
Operations per second 
	395.61 
	278.56 


 
 	 
Table 13 shows the performance metrics collected from the MVP cross-browser cache parser and MZCacheView during the parsing of Firefox cache files (see Appendix AH for the full results). 
Table 13 – Quantitative evaluation results showing the performance metrics collected after using the MVP CrossBrowser Cache Parser and MZCacheView to parse firefox cache files.  
	 
	MVP Cross-Browser  Cache Parser  
(Firefox) 
	MZCacheView 

	Average percentage of processor time used 
(%) 
	89.94 
	44.47 

	Average amount memory consumed 
(MB) 
	243.16 
	3.72 

	Average Number of  
IO Read/Write 
Operations per second 
	643.50 
	769.16 


 
4.4.2 Quantitative Evaluation Discussion  
4.4.2.1 The Identification and Recovery of Cached Webpage Resources 
Starting with the results shown in Table 11, it is evident that each of the cache parsers are equally effective at identifying cached webpage resources from Chrome and Firefox cache files. However, these results also show that the MVP cross-browser cache parser is more effective at recovering cached webpage resources when parsing Chrome cache files, recovering 4 more resources than ChromeCacheView. Whereas MZCacheView is more effective when recovering cached webpage resources from Firefox cache files, recovering 44 more resources than the MVP cache parser. 
Iqbal, Motyliński, & MacDermott (2021) and Horsman (2018b) both stated the importance of parsing cache files during a forensic investigation. However, Iqbal, Motyliński, & MacDermott (2021) also identified that ChromeCacheView had its limitations, discovering that it performs an incomplete recovery of cached webpage resources. The results in Table 11 both support and confirm this limitation as the MVP cache parser was able to recover more cached webpage resources than ChromeCacheView. 
4.4.2.2 The Performance Metrics 
In general, the results shown in Table 12 and Table 13 show that the MVP cache parser is less efficient than ChromeCacheView and MZCacheView as it consumes more system resources.  
For the average percentage of processor time used, the MVP cache parser consumed 60.61% more average processor time than ChromeCacheView, and 45.47% more average processor time than MZCacheView. 
Similarly, this trend continues for the memory consumed by the MVP cache parser. Consuming an average of 105.32 more megabytes of memory than ChromeCacheView, and 239.44 more megabytes of memory than MZCacheView. 
This large difference in performance is likely due to the MVP cache parser not being optimised for performance. Rather, it has been built to function as an MVP and challenge the capabilities of the publicly available cache parsers. Nevertheless, this suggests that the MVP cache parser would likely parse cache files slower than either ChromeCacheView or MZCacheView. 
When analysing the average number of IO read/write operations per second, the efficiency of the cache parsers fluctuated. For Firefox, the results show that the MVP cache parser was more efficient than MZCacheView as it used 125.66 less average IO read/write operations per second. Whereas for Chrome, the MVP cache parser was less efficient than ChromeCacheView as it used 117.05 more average IO read/write operations per second. 
This fluctuation in performance is likely due to the number of resources recovered by the MVP cache parser. Since the MVP cache parser recovered less resources than MZCacheView, it performed less IO read/write operations per second. As the MVP cache parser recovered more resources than ChromeCacheView, it performed more IO read/write operations per second. Additionally, despite the results for ChromeCacheView and MZCacheView not including the generation of a report, the results show this didn’t have a significant impact. 
 
 	 
4.5 Qualitative Evaluation 
Moving onto the qualitative evaluation, these results aim to compare the capabilities and features available for each of the cache parsers. 
4.5.1 Qualitative Evaluation Results 
4.5.1.1 What browsers are supported by the cache parser? 
Table 14 shows a list of all the browsers which are supported by the MVP cross-browser cache parser, ChromeCacheView, and MZCacheView. 
Table 14 – List of browsers which are supported by each of the cache parsers. 
	 
	MVP Cross-Browser 
Cache Parser 
	ChromeCacheView 
	MZCacheView 

	Chrome 
	Yes 
	Yes 
	No 

	Firefox 
	Yes 
	No 
	Yes 

	Brave 
	No 
	Yes 
	No 

	Opera 
	No 
	Yes 
	No 

	Vivaldi 
	No 
	Yes 
	No 

	Yandex 
	No 
	Yes 
	No 

	Edge 
	No 
	Yes 
	No 

	Brave 
	No 
	Yes 
	No 


 
 	 
4.5.1.2 What report formats do the cache parsers support? 
Table 15 shows the different report formats which are supported by each of the cache parsers. 
Table 15 – Comparison of the report file formats supported by the MVP Cross-Browser Cache Parser, MZCacheView, and ChromeCacheView.  
	File Format 
	MVP Cross-Browser 
Cache Parser 
	ChromeCacheView 
	MZCacheView 

	Text File 
	No 
	Yes 
	Yes 

	Tab-delimited Text File 
	No 
	Yes 
	Yes 

	Tabular Text File 
	No 
	Yes 
	Yes 

	HTML File (Horizontal) 
	No 
	Yes 
	Yes 

	HTML File (Vertical) 
	No 
	Yes 
	Yes 

	XML 
	Yes 
	Yes 
	Yes 

	CSV 
	Yes 
	Yes 
	Yes 

	JSON 
	Yes 
	No 
	No 

	XLSX 
	Yes 
	No 
	No 


 
 	 
4.5.1.3 What information is extracted from the browser’s cache files? 
Table 16 compares information that is present in Chrome’s cache files to the information extracted and outputted by both ChromeCacheView and the MVP Cross-Browser Cache Parser. 
Table 16 – Comparing the information present in Chrome’s cache files, to the information extracted and outputted by ChromeCacheView and the MVP Cache Parser. 
	Chrome Cache 
Information 
	Present in the output of ChromeCacheView? 
	Present in the output of  the MVP Cache Parser? 

	Key Hash 
	Yes 
	Yes 

	Reuse Count 
	No 
	Yes 

	Refetch Count 
	No 
	Yes 

	Entry Creation Time 
	No 
	Yes 

	Key 
	No 
	Yes 

	URL 
	Yes 
	Yes 

	Website 
	Yes 
	Yes 

	Frame 
	Yes 
	Yes 

	HTTP Headers 
	Partial 
	Yes 


 
 	 
Table 17 compares information that is present in Firefox’s cache files to the information extracted and outputted by both MZCacheView and the MVP Cross-Browser Cache Parser. 
Table 17 – Comparing the information present in Firefox’s cache files, to the information extracted and outputted by MZCacheView and the MVP Cache Parser. 
	Firefox Cache  Information 
 
	Present in the output of MZCacheView? 
	Present in the output of  the MVP Cache Parser? 

	Cache File Version 
 
	No 
	Yes 

	Key  
	No 
	Yes 

	Key Size 
	No 
	Yes 

	URL 
	Yes 
	Yes 

	Fetch Count 
 
	Yes 
	Yes 

	Last Fetch Time 
 
	Yes 
	Yes 

	Last Modified Time 
 
	Yes 
	Yes 

	Expiration Time 
	Yes 
	Yes 

	Frecency 
	No 
	Yes 

	Flags 
	No 
	Yes 

	 
Common 
Metadata 
Elements 
 
 
	Security Info 
	No 
	Yes 

	
	Request Method 
	No 
	Yes 

	
	Response Method 
	No 
	Yes 

	
	Response Headers 
	Partial 
	Yes 

	
	CTID 
	No 
	Yes 


4.5.2 Qualitative Evaluation Discussion 
4.5.2.1 Supported Browser Parsing Capabilities 
As shown by the results in Table 14, the MVP Cache Parser supports the parsing of both different cache mechanisms found in Chrome and Firefox. Whereas analysis of the browsers supported by ChromeCacheView reveal that it does not have support for multiple cache mechanisms, with all the supported browsers using Chromium Disk Cache. Similarly, MZCacheView only supports Firefox’s cache mechanism.   
4.5.2.2 Supported Report Formats 
Developing this further, Table 15 shows that ChromeCacheView and MZCacheView support a wider variety of basic report formats, with a total of 7 supported formats. Whereas the MVP CrossBrowser Cache Parser support less, with only 4 supported formats. Despite this, the MVP cache parser supports the JSON format which neither ChromeCacheView nor MZCacheView does. This JSON format is advantageous because it creates a user-friendly structure of the results which can easily be ingested into database systems like MongoDB for future processing and analysis. 
Previously, Iqbal, Motyliński, & MacDermott (2021) claimed that ChromeCacheView lacked the ability to produce reports. However, the results produced from the evaluation prove that ChromeCacheView can provide a report, just not at the same time as recovering cached webpage resources.  
4.5.2.3 Information Extracted from the Cache Files 
Lastly, it can be observed from the results in Table 16 that the MVP cross-browser cache parser performed a more complete extraction of cache information present in Chrome and Firefox cache files. ChromeCacheView missed 4 pieces of key information present in Chrome’s cache files, while also only performing a partial extraction of the HTTP header. Subsequently, these results support Iqbal, Motyliński, & MacDermott (2021) by showing that ChromeCacheView performs an incomplete extraction. 
In addition to this, the trend is again the same for MZCacheView. MZCacheView was unable to extract a large amount of key information present in Firefox’s cache files. This included a lot of the metadata elements which would provide a variety of useful information relating to the cached resources during a forensic investigation. 
 
4.6 Results Conclusion 
To conclude, this section discussed the MVP cross-browser cache parser and included details on its development. This included how it handles the parsing of Chrome and Firefox cache files considering their different cache mechanisms. 
Following this, the critical evaluation and discussion of the performance and capabilities of the MVP cross-browser cache parser highlighted the importance of using different tools during a forensic investigation as it validates the output. 
When parsing Chrome cache files, the MVP cross-browser cache parser would be considered the more effective parser due to it recovering more resources and performing a more complete extraction of cache information. Despite consuming more system resources. However, if other Chromium-based web browsers were present on the system, then ChromeCacheView would be recommended over the MVP cross-browser cache parser. 
When parsing Firefox cache files, the two evaluated cache parsers should be used interchangeably. MZCacheView should be used to recover the cached webpage resources, with the MVP cache parser then being used to perform the more complete extraction of cache information from the cache files. 
As part of these conclusions, it’s important to note that each cache parser was evaluated using the same test data to eliminate the bias caused by using self-generated test data. However, due to changing webpage content, replicating the generation of the test data was deemed to be infeasible. If repeating the evaluation is desired, then the test data can be made available upon request. Additionally, the performance of the cache parsers may differ depending on the test data used. 	 
5. Conclusion 
5.1 Introduction 
Following on from the results and discussion, this section summarises any previous conclusions made, as well as reflecting on the project’s aims and objectives by discussing the extent to which they have been achieved. Any contributions to knowledge and limitations encountered during the project are then summarised. Finally, future work is discussed, and a reflection is performed on personal project performance. 
5.2 Overview of The Project’s Conclusions 
Unfortunately, the literature review identified a lack of academic literature which evaluated the performance and capabilities of publicly available cache parsers. Therefore, this project addressed these issues by using the research conducted on the latest browser cache mechanisms to develop an MVP cache parser, which was then evaluated alongside two publicly available cache parsers. The following conclusions have been made during this process. 
Firstly, the investigations performed by Flowers et al. (2016) and Nelson et al. (2019) found that no cache files were present on the user’s system after using portable and private versions of Firefox and Chrome. This allowed for the conclusion that these private and portable capabilities are the key factor that affects the availability of cache files. 
During the literature review, it was also found that the cache mechanisms and structures of Google Chrome and Mozilla Firefox were vastly different. Chrome inherits its cache mechanism from Chromium Disk Cache, whereas Firefox implements its own cache mechanism, known as cache2. Exploring these mechanisms also revealed the unique structure of each browser’s cache files. Despite these differences, this research informed the development of the MVP cache parser which supports the parsing of Chrome and Firefox cache files. 
Also, the critical evaluation of the cache parsers revealed that the MVP cache parser was more effective at parsing Chrome cache files compared to ChromeCacheView. Thus, recommending the MVP cache parser over ChromeCacheView for parsing Chrome’s cache. This decision was made because ChromeCacheView recovered less cached webpage resources and extracted less information from the cache files than the MVP Cache Parser. Further supporting the 
ChromeCacheView extraction limitations identified by Iqbal, Motyliński, & MacDermott (2021). 
However, ChromeCacheView is recommended over the MVP cache parser when other Chromium-based web browser such as Opera or Brave are present. 
This evaluation also elaborated on the importance of using multiple tools to complement each other’s output. When parsing Firefox cache files, MZCacheView was able to recover more cached webpage resources than the MVP Cache Parser. This was still limited because the reports generated by MZCacheView revealed that the parser performed a partial extraction of information from the cache files. Therefore, the MVP cache parser is recommended to compliment the recovery of resources as it can generate reports which contain all the information present in Firefox’s cache files. 
In fact, the changes section identified that ChromeCacheView and MZCacheView were both limited as they failed to generate a report after recovering the cached resources. This meant that these reports needed to be generated separately. 
5.3 Project Reflection 
5.3.1 Aim 
The project’s aim was to develop an MVP cross-browser cache parser, focusing on the normal installations of Google Chrome and Mozilla Firefox. This was accomplished by reviewing literature on the cache structures of Chrome and Firefox to develop the processes defined in the experiment methods. The development of the MVP cache parser then applied these defined processes alongside the cache parsers MoSCoW requirements to implement the ability to parse Chrome and Firefox cache files. Subsequently, achieving the project’s aim. Despite this success, the development was limited due to a lack of resources and time constraints. Resulting in the MVP cache parser consuming more system resources than publicly available cache parsers. 
5.3.2 Objectives 
Objective one required critically reviewing contemporary literature relevant to this project’s area to help inform the methodology. This was achieved during the literature review, where literature on HTTP Concepts, HTTP Caching, Portable and Private Web Browsers, and the caches of Chrome and Firefox were critically analysed. However, aspects of this research were limited due to outdated research. Analysis was then performed to critically compare the outdated research on the cache structures of Chrome and Firefox to their official source code. The latest cache structures were then extracted and used to help inform the methodology. 
Objective two required taking the outputs of the literature review and using this to develop an experimental methodology. This was accomplished by taking the research performed in the literature review on the latest cache mechanisms and structures of Chrome and Firefox and using it to develop processes and requirements for the MVP Cross-Browser Cache Parser defined in the project’s experimental methodology.  
Objective three required performing the primary research and presenting the data needed to develop the MVP cache parser so that it could parse both Chrome and Firefox caches.  Like objective one and two, the primary research was performed during the literature review on the cache mechanism and structures of Chrome and Firefox. The experiment methods then defined and presented the data (i.e., processes and requirements) using this research, which would then be used to develop the MVP cache parser so it could parse Chrome and Firefox cache files. 
Objective four was to develop an MVP cache parser to recover cached webpage resources. This has been achieved during the development process, which used the processes and requirements defined in the experiment methods to develop a cache parser which supported the parsing of Chrome and Firefox cache files. The evaluation of this cache parser then revealed that it was able to recover the cached resources for both Chrome and Firefox. However, the performance of this parser was limited due to a lack of resources and time constraints. 
Objective five required critically evaluating and discussing the performance and capabilities of the MVP cache parser against publicly available cache parsers. The performance of these cache parsers was critically evaluated during the quantitative evaluation using a variety of carefully selected metrics to determine the effectiveness and efficiency of the cache parser. Afterwards, the parsers capabilities were then critically evaluating using a variety of comparative questions during the qualitative evaluation to identify any limitations present. A variety of conclusions and recommendations were then made based on these discussions and can be seen in Section 4.6. 
Objective six was to conclude the findings of the project while reflecting and making recommendations based on these findings. This has been achieved in Section 5.2 of this report, where conclusions drawn from the research conducted in the literature review and the evaluation results have been summarised and recommendations on which cache parsers to use have been made. 
5.3.3 Research Questions (RQs) 
RQ 1 was to identify the differences in cache structures and mechanisms of Chrome and Firefox. This has been achieved during the literature where it was identified that Chrome used Chromium’s 
Disk Cache as it’s cache mechanism, and Firefox used cache2. Further comparison of academic literature against browser source code also revealed the differences in cache structures between the browsers. 
RQ 2 required the identification of information which can be extracted from the caches of Chrome and Firefox. This was accomplished during the qualitative evaluation which identified all the key information available in the browser’s cache files and compared it to the information extracted by each of the cache parsers. 
Finally, RQ 3 was to identify how publicly available cache parsers differed to the MVP crossbrowser cache parser in terms of capability and performance. This has been achieved through the project’s evaluation, where the performance and capabilities of the selected cache parsers were evaluated using a variety of performance metrics and comparative question. The results were then discussed to identify how the publicly available cache parsers differed to the MVP cross-browser cache parser, and which parsers to use in different scenarios. 
5.4 Limitations 
To recap, there were many project limitations which affected the decisions and processes used during this project.  
During the literature review, a lot of the literature surrounding the private and portable web browsing capabilities and the cache structures of Chrome and Firefox was outdated, limiting the information which could be carried forward into the methodology without performing additional analysis. 
For the limitations present in the methodology, replicating the data generated for the experiment was deemed infeasible because of changing webpage content and adverts present during the data generation process. In addition to this, the generation of the data was inherently limited by ethical and privacy concerns which prevented the use of real-world data. Therefore, the evaluation used self-generated data which doesn’t accurately reflect the state of cache files in a real-world scenario.  
Developing the MVP cache parser was also limited due to a lack of resources and time constraints. With more time and resources, the cache parser’s capability could have been expanded to implement support for parsing different browsers or even mobile applications. 
Finally, limitations were also present in the results and conclusions. The results were limited because the performance metrics collected for ChromeCacheView and MZCacheView didn’t include the generation of a report file. In addition to this, the results, conclusions, and recommendations were limited due to the use of self-generated data mentioned previously. 
5.5 Future Work 
Reflecting on the limitations and outputs of this project, this project can be expanded in many ways. 
Starting with the limitations, it might be beneficial to repeat the evaluation using a variety of realworld data sets. This would help to accurately reflect the cache parser’s ability to extract cache information in different real-world scenarios and would allow for a more reliable evaluation of the cache parsers.  
In conjunction with this, the investigations into private and portable web browsers performed by Nelson, Shukla, & Smith (2019) and Flowers et al. (2016) were found to be outdated. Therefore, their investigations could be revisited to use the latest versions of browsers and expand the evaluation of the cache parsers to identify whether they can recover cache information after a private or portable browsing session. 
Lastly, the capabilities of the MVP cross-browser cache parser could be expanded to include support for more privacy-oriented browsers such as Brave, or less researched browsers such as Safari. As seen during the qualitative evaluation, ChromeCacheView already supports an extensive amount of Chromium-based web browsers.  
5.6 Self-appraisal 
By undertaking this project, new knowledge surrounding digital forensics has been gained. However, during this process, a variety of challenges were encountered which assist in highlighting personal strengths and weaknesses. 
One of the first challenges encountered was the overall project management. Upon completing the project, this is considered a strength as it reinforced the importance and benefit of the Gantt chart. The Gantt chart ensured the overall project was organised and delivered in time. 
Occasionally, the timings set using the Gantt chart were unrealistic. For instance, the methodology took longer than originally planned. However, this was likely due to an initial lack of understanding behind the complexity and overall importance of the methodology for this project. 
In addition to this, the development of the MVP cache parser was another personal strength. To enable this development, the research into the cache mechanisms and structures of Chrome and Firefox was vital. This knowledge was then successfully converted into a fully functioning parser which could be used to parse the cache files of both Chrome and Firefox. Despite having very little previous knowledge on the cache mechanisms of Chrome and Firefox. 
Moving onto weaknesses, the ethical and privacy concerns around the cache parser should have been integrated and addressed more in the overall project. If this was done, then there’s the potential that real-world test data could have been used rather than self-generated test data. In addition to this, the MVP cache parser might have been able to be shared publicly. However, due to time constraints, this was infeasible. 
Despite this, the project has provided the foundational knowledge needed to expand the work further. 
 
 
 
 	 
6. References 
Afridi, N. (2021). The Current Status of Forensic Science and its Impact on Administration of Criminal Justice System in Pakistan: An Analytical Study. 1-32. Retrieved 02 15, 2023, from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3781586 
Agile Business Consortium. (2014). DSDM Project Framework - Chapter 10: MoSCoW Prioritisation. Retrieved 02 22, 2023, from Agile Business Consortium: https://www.agilebusiness.org/dsdm-project-framework/moscow-prioririsation.html 
AlexSoft. (2019, May 16). The Most Popular Prioritization Techniques and Methods: MoSCoW, RICE, KANO model, Walking Skeleton, and others. Retrieved 01 26, 2023, from AlexSoft: 
https://www.altexsoft.com/blog/business/most-popular-prioritization-techniques-andmethods-moscow-rice-kano-model-walking-skeleton-and-others/ 
Berner-Lee, T., Fielding, R., & Frystyk, H. (1996). RFC 1945 - Hypertext Tranfser Protocol - HTTP/1.0. Internet Engineering Task Force (IETF). doi:10.17487/RFC1945 
Brush, K., Rosencrance, L., & Cobb, M. (2021, September). cybercrime. Retrieved 02 15, 2023, from TechTarget: https://www.techtarget.com/searchsecurity/definition/cybercrime 
Chromium. (2022a, September 14). disk_format.h. Retrieved 01 11, 2023, from Chromium Code Search: https://source.chromium.org/chromium/chromium/src/+/main:net/disk_cache/blockfile/dis k_format.h;bpv=0;bpt=1 
Chromium. (2022b, September 14). addr.h. Retrieved 02 01, 2023, from Chromium Code Search: 
https://source.chromium.org/chromium/chromium/src/+/main:net/disk_cache/blockfile/ad dr.h;bpv=0 diagrams.net. (2023). app.diagrams.net. Retrieved from diagrams.net: https://app.diagrams.net/ 
Dori, D., & Sharon, A. (2017). Model-Based Project-Product Lifecycle Management and Gantt Chart Models: A Comparative Study. Systems Engineering, 20, 1-20. doi:10.1002/sys.21407 
El-Tayeb, M., Taha, A., & Fayed, Z. T. (2022). Live-Streamed Video Reconstruction for Web Browser Forensics. Ingenierie des Systemes d'Information, 21(1), 61-66. 
doi:10.18280/ISI.270107 
Fielding, R., Gettys, J., Mogul, J., H, F., & Berners-Lee, T. (1997). RFC 2068 - Hypertext Transfer Protocol - HTTP/1.1. Internet Engineering Task Force (IETF). doi:10.17487/RFC2068 
Fielding, R., Nottingham, M., & Reschke, J. (2022a). RFC 9110 - HTTP Semantics. Internet Engineering Task Force (IETF). doi:10.17487/RFC9110 
Fielding, R., Nottingham, M., & Reschke, J. (2022b). RFC 9111 - HTTP Caching. Internet Engineering Task Force (IETF). doi:10.17487/RFC9111 
Flowers, C., Mansour, A., & Al-Khateeb, H. M. (2016). Web browser artefacts in private and portable modes: A forensic investigation. International Journal of Electronic Security and Digital Forensics, 8(2), 99-117. doi:10.1504/IJESDF.2016.075583 
Google. (2022). How private browsing works in Chrome. Retrieved 12 05, 2022, from Google Chrome Help: https://support.google.com/chrome/answer/7440301 
Gupta, K., Varol, C., & Zhou, B. (2023). Digital forensic analysis of discord on google chrome. 
Forensic 	Science 	International: 	Digital 	Investigation, 	44. doi:https://doi.org/10.1016/j.fsidi.2022.301479 
Habben, J. (2015, February 10). Firefox Cache2 Storage Breakdown. Retrieved 12 12, 2022, from RSSing: https://forensics618.rssing.com/chan-8498287/article87.html 
Hariharan, M., Thakar, A., & Sharma, P. (2022). Forensic Analysis of Private Mode Browsing 
Artifacts in Portable Web Browsers Using Memory Forensics. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS), (pp. 1-5). doi:10.1109/IC3SIS54991.2022.9885379 
Hasan, F.-K., Sondos, K.-M., Hussin, H. J., & Ale, H. J. (2021). Forensic analysis of private browsing mechanisms: Tracing internet activities. Journal of Forensic Science and Research, 5(1), 12-19. doi:10.29328/JOURNAL.JFSR.1001022 
Hassan, N. A. (2019). Web Browser and E-mail Forensics. In Digital Forensics Basics: A Practical 
Guide Using Windows OS (pp. 247-289). Berkeley, CA: Apress. doi:10.1007/978-1-48423838-7_8 
Horsman, G. (2018a). I didn't see that! An examination of internet browser cache behaviour following website visits. Digital Investigation, 25, 105-113. doi:10.1016/J.DIIN.2018.02.006 
Horsman, G. (2018b). Reconstructing streamed video content: A case study on YouTube and 
Facebook Live stream content in the Chrome web browser cache. Digital Investigation, 26, 30-37. doi:10.1016/J.DIIN.2018.04.017 
Horsman, G., Findlay, B., Edwick, J., Asquith, A., Swannell, K., Fisher, D., . . . McKain, P. (2019). A forensic examination of web browser privacy-modes. Forensic Science International: Reports, 1. doi:https://doi.org/10.1016/j.fsir.2019.100036 
Hughes, K., Papadopoulos, P., Pitropakis, N., Smales, A., Ahmad, J., & Buchanan, W. (2021). Browsers' Private Mode: Is It What We Were Promised? Computers, 10. doi:10.3390/computers10120165 
Iqbal, F., Motyliński, M., & MacDermott, Á. (2021). Discord Server Forensics: Analysis and 
Extraction of Digital Evidence. 2021 11th IFIP International Conference on New 
Technologies, 	Mobility 	and 	Security 	(NTMS), 	(pp. 	1-8). doi:10.1109/NTMS49979.2021.9432654 
Jadhav, M. R., & Meshram, B. B. (2018). Web Browser Forensics for Detecting User Activities. 
International Research Journal of Engineering and Technology (IRJET), 5(7), 273-279. Retrieved 02 15, 2023, from https://www.irjet.net/archives/V5/i7/IRJET-V5I748.pdf 
Mozilla. (2014, September). Firefox Release Notes - 32.0. Retrieved 12 12, 2022, from Mozilla: https://www.mozilla.org/en-US/firefox/32.0/releasenotes/ 
Mozilla. (2022, October 28). Evolution of HTTP. Retrieved 12 14, 2022, from MDN Web Docs: 
https://developer.mozilla.org/en-
US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP 
Mozilla. (2022). Private Browsing - Use Firefox without saving history. Retrieved 12 05, 2022, from Mozilla Firefox Support: https://support.mozilla.org/en-US/kb/private-browsing-usefirefox-without-history 
Narayanan, A. S., Rajkumar, T., & Sobhana, N. V. (2017). Forensic analysis of residual artifacts from private browsing sessions in Linux. Advances in Intelligent Systems and Computing, 479, 39-49. doi:10.1007/978-981-10-1708-7_5/TABLES/1 
Nelson, R., Shukla, A., & Smith, C. (2019). Web Browser Forensics in Google Chrome, Mozilla 
Firefox, and the Tor Browser Bundle. In X. Zhang, & K.-K. R. Choo (Eds.), Digital Forensic Education: An Experiential Learning Approach (pp. 219-241). Springer International Publishing. doi:10.1007/978-3-030-23547-5_12 
Nguyen, H. V., Lo Iacono, L., & Federrath, H. (2019). Mind the cache: Large-scale explorative study of web caching. Proceedings of the ACM Symposium on Applied Computing, F147772, pp. 2497-2506. doi:10.1145/3297280.3297526 
NirSoft. (2022a, December 22). ChromeCachView v2.41 - Cache viewer for Google Chrome Web browser. Retrieved 01 11, 2023, from NirSoft: https://www.nirsoft.net/utils/chrome_cache_view.html 
NirSoft. (2022b, October 22). MZCacheView v2.21 - View the cache files of Firefox Web browsers. 
Retrieved 	01 	11, 	2023, 	from 	NirSoft: https://www.nirsoft.net/utils/mozilla_cache_viewer.html 
Sadiku, M. N., Tembely, M., & Musa, S. M. (2017). Digital Forensics. International Journal of Advanced Research in, 7(4), 274-276. doi:10.23956/ijarcsse/V7I4/01404 
Sawicki, J., Zych, P., & Sawicki, B. (2021). Practical studies of local HTTP cache security. CPEE 2021 - 22nd International Conference "Computational Problems of Electrical Engineering", (pp. 1-5). doi:10.1109/CPEE54040.2021.9585249. 
Searchfox. (2021, September 27). CacheFileMetadata.h. Retrieved 01 11, 2023, from Searchfox: https://searchfox.org/mozilla-central/source/netwerk/cache2/CacheFileMetadata.h 
Searchfox. (2022, November 12). CacheIndex.h. Retrieved 01 11, 2023, from Searchfox: https://searchfox.org/mozilla-central/source/netwerk/cache2/CacheIndex.h 
Shafqat, N. (2016). Forensic Investigation of User's Web Activity on Google Chrome using various Forensic Tools. IJCSNS International Journal of Computer Science and Network Security, 16(9), 123-132. Retrieved 11 08, 2022 
Smartsheet. (2019, February 20). Gantt Chart Templates in Excel and Other Tools. Retrieved 11 07, 2022, from smartsheet: https://www.smartsheet.com/gantt-chart-excel-templates 
StatCounter. (2022). Desktop Browser Market Share Worldwide. Retrieved from StatCounter - 
	GlobalStats: 	https://gs.statcounter.com/browser-market-
share/desktop/worldwide/#monthly-202201-202211 
Statista. (2022, July). Number of internet and social media users worldwide as of July 2022. Retrieved from Statista: https://www.statista.com/statistics/617136/digital-populationworldwide/ 
Studiawan, H., Sohel, F., & Payne, C. (2019). A survey on forensic investigation of operating system logs. Digital Investigation, 29, 1-20. doi:10.1016/j.diin.2019.02.005 
Suma, G. S., Dija, S., & Pillai, A. T. (2017). Forensic Analysis of Google Chrome Cache Files. 2017 IEEE International Conference on Computational Intelligence and Computing Research, ICCIC 2017, 1-5. doi:10.1109/ICCIC.2017.8524272 
Tableau. (n.d.). Collect Data with Windows Performance Monitor. Retrieved 03 10, 2023, from Tableau - Tableau Server on Windows Help: https://help.tableau.com/current/server/enus/perf_collect_perfmon.htm 
 
 	 

7. Appendices 
7.1 Appendix A – Chrome Cache Address Structure 
	• 	Go Back (Section 2.5.2.2 – Google Chrome’s Cache File Structures) 
Table 18 contains the structure used to parse Chrome’s cache addresses. 
Table 18 – Structure of Chrome’s cache addresses - (Chromium, 2022b) 
	File Type  
	Field 
	Bits 

	 
	initialized bit 
	1000 0000 0000 0000 0000 0000 0000 0000 

	
	file type 
	0111 0000 0000 0000 0000 0000 0000 0000 

	External File 
	file number 
	0000 1111 1111 1111 1111 1111 1111 1111 

	 
Block File 
	reserved bits 
	0000 1100 0000 0000 0000 0000 0000 0000 

	
	number of blocks 
	0000 0011 0000 0000 0000 0000 0000 0000 

	
	file selector 
	0000 0000 1111 1111 0000 0000 0000 0000 

	
	block number 
	0000 0000 0000 0000 1111 1111 1111 1111 


 
 	 
Seth H 	SOC10701  	   40510741 



Page 10 of 116 
 
Page 10 of 116 
 
Page 10 of 116 
 
7.2 Appendix B	Reliability 
	 	Go Back (Section 3.2.1 – Reliability) 
Table 19 – Actions that are to be taken to consider reliability in each of the methods. 
	Section 
	Action 

	3.3 - Literature Review  
	Define the source selection and analysis process. 

	
	List the reputable source repositories used in the literature review. 

	
	List the keywords used when searching the reputable source repositories. 

	3.5.3 - Development 
 
 
	Explicitly outline the cache parser requirements. 

	
	Define the processing flow of key cache parser functionality. 

	
	Make the source code of the cross-browser cache parser functionality available upon request. 

	3.5.4 - Data Generation 
	Define the process used to generate the environments used to generate the test data, with their specifications. 

	
	Specify the versions of Google Chrome and Mozilla Firefox used. 

	
	Define the process used to generate the test data, alongside the specific websites visited. 

	
	Make the data generated for the evaluation available upon request. 

	3.6 - Evaluation  
 
	List the environment specification used for the evaluation, alongside the versions of the publicly available cache parsers. 

	
	Outline the different tools and metrics used to evaluate the performance of the cache parsers. 

	
	Define the comparative questions to be asked during the qualitative evaluation. 

	
	Define the full evaluation process. 


 
7.3 Appendix C	Error 
	 	Go Back (Section 3.2.3 – Error) 
Table 20 – Actions that are to be taken to minimise the risk of error. 
	Section 
	Action 

	3.5.3 - Development 
	Implement exception handling in cache parser code. 

	
	Set default values for the cross-browser cache parser’s command line arguments. 

	
	Embed tests within the code to catch unexpected results. 


 
 
7.4 Appendix D – Bias 
	• 	Go Back (Section 3.2.4 – Bias) 
Table 21 – Actions that will be taken to account for bias in the self-generated test data. 
	Section 
	Action 

	3.5.4 - Data Generation 
	Make the test-data generated for the evaluation available upon request. 

	3.6 - Evaluation  
	Use the same generated data for all cache parsers. 


 
 	 
7.5 Appendix E	Reputable Source Repositories 
	 	Go Back (Section 3.3 – Literature Review Methods) 
Table 22 contains a list of reputable source repositories which were used to search for different academic sources. 
Table 22 – Reputable source repositories used during the literature review. 
	Name 

	Google Scholar 

	IEEE Xplore 

	ACM 

	Internet Engineering Task Force (IETF) 

	Forensics-focused Blogs (James Habben) 


 
 
 	 
7.6 Appendix F	Keywords 
 	Go Back (Section 3.3 – Literature Review Methods) Table 23 contains the list of keywords used to refine the search results. 
Table 23 – Keywords used to search and filter for sources during the literature review. 
	Keyword 

	Digital Forensics 

	Browser Forensics 

	Browser Artefacts 

	Google Chrome 

	Mozilla Firefox 

	Browser Cache 

	Cache 

	Cache Structures 

	Cache Mechanisms 

	Hypertext Transfer Protocol (HTTP) 

	HTTP Cache 

	Portable Browser 

	Privacy Features 

	Browser Privacy Modes 

	Cache Files 


 
 	 
7.7 Appendix G	Project Gantt Chart 
	 	Go Back (Section 3.4 – Project Management Methods) 
The Gantt chart shown in Figure 16 was taken from a template provided by from (Smartsheet, 2019). 
 
Figure 
16
 
–
 
Project Gantt Chart 
–
 
Methodology Progress
 

 	 
7.8 Appendix H	MoSCoW Prioritisation Framework 
	 	Go Back (Section 3.4 – Project Management Methods) 
Table 24 describes the 4 categories used in the MoSCoW Prioritisation Framework. Table 24 – Categories of the MoSCoW Prioritisation Framework 
	Category 
	Description 

	Must Have 
	Mandatory, non-negotiable requirements. 

	Should Have 
	Important requirements with substantial impact, but not vital. 

	Could Have 
	Desirable requirements but have less impact. 

	Won’t Have 
	Unrealistic requirements not to-be implemented yet. 


 
 	 
Seth H 	SOC10701  	   40510741 
	 	 – 
•
	 	 – 
•
	 	 – 
•

Page 10 of 116 
 
Page 10 of 116 
 
Page 10 of 116 
 
7.9 Appendix I – Cache Parser Libraries 
	 	Go Back (Section 3.5.3 – Cache Parser Development) 
Table 25 - List of python libraries that will be used for the cross-browser cache parser. 
	Python Library 

	argparse 

	binascii 

	brotli 

	csv 

	ctypes 

	datetime 

	dicttoxml 

	gzip 

	hashlib 

	json 

	logging 

	magic 

	mimetypes 

	os 

	pathlib 

	re 

	time 

	typing 

	xlsxwriter 

	xml.dom.minidom 


 
 	 
7.10	J – Multi-Browser Cache Identification Process 
· 3.5.3.1 – (Must Have) Multi-Browser Cache Identification and Parsing Mechanism) 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
Figure 17 outlines cache identification process, with Table 26 displaying the regular expressions used during this process. 
 

	17	Cache Identification Process. 
· Go Back (Section 3.5.3.1 – (Must Have) Multi-Browser Cache Identification and Parsing Mechanism) 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
Table 26 – Regular Expressions that will be used to identify cache folders for Chrome and Firefox 
	Browser 
	Regex 

	Google Chrome 
	.*\\Google\\Chrome\\User Data\\\w+\\Cache\\Cache_Data$ 

	Mozilla Firefox 
	.*\\Mozilla\\Firefox\\Profiles\\.*-release\\cache2(\\entries)?$ 


 
 	 

7.11	K – Chrome Cache Parsing Process 
· 3.5.3.1 – (Must Have) Multi-Browser Cache Identification and Parsing Mechanism) 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
 

	18	The logic and processing flow behind the Chrome Cache Parser 

•

Appendix  
Go Back (Section 

Page 10 of 116 
 
Page 10 of 116 
 
Figure 	 – 
Figure created by author using (diagrams.net, 2023). 
Page 81 of 116 
 
7.12	L	Firefox Cache Parsing Process 
· 3.5.3.1 – (Must Have) Multi-Browser Cache Identification and Parsing Mechanism) 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
 

	19	The logic and processing flow behind the Firefox Cache Parser 
7.13	M – Cache Recovery Mechanism Process 
· 3.5.3.2 – (Must Have) Cache Recovery Mechanism) 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser
 

	20	The logic and processing flow behind decompressing the raw bytes of the requested resource. 
7.14	N	CLI Integration Process 
· 3.5.3.3 – (Should Have) CLI Integration) 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser
 

	21	Cache Parser CLI Integration Process 
Appendix  – 
Go Back (Section 
Appendix  – 
Go Back (Section 
) 
	 Appendix 	 
Go Back (Section 
) 

Figure 	 – 
Figure created by author using (diagrams.net, 2023). 
Page 81 of 116 
 
Figure 	 – 
Figure created by author using (diagrams.net, 2023). 
Page 81 of 116 
 
Figure 	 – 
Figure created by author using (diagrams.net, 2023). 
Page 81 of 116 
 
7.15	O	Reporting Mechanism Process 
· 3.5.3.4 – (Should Have) Reporting Mechanism) 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser
 
Figure 
22
 
–
 
Reporting Mechanism Process
 

Figure created by author using (diagrams.net, 2023). 
7.16	P	High-Level Object-Orientated Cache Parser Code Structure 
	• 	3.5.3.5 – (Could Have) Modular, Accessible, and Portable Code) 
 

Figure 23 - High-level overview of the cache parser's code structure, and the OO classes used. 
Figure created by author using (diagrams.net, 2023). 
7.17	Q	Environment Specifications and Set-up Process 
· 3.5.4.1 – Environment Configuration Process) 
· Go Back (Section 3.6.3 – Evaluation Process) 
Table 27 defines the environments specifications. 
Note – this process uses VMWare Fusion Version 13.0.1 to create the virtual environments. 
 

Figure 24 – The environment set-up process used to create all the project’s virtual environments. 
Figure created by author using (diagrams.net, 2023). 
Appendix  – 
Go Back (Section 
) 
Appendix  – 
Go Back (Section 
Appendix  – 
Go Back (Section 

Page 10 of 116 
 
Page 10 of 116 
 
Page 10 of 116 
 
· Go Back (Section 3.5.4.1 – Environment Configuration Process) 
· Go Back (Section 3.6.3 – Evaluation Process) 
Table 27 – Virtual Environment Specifications 
	Spec 
	Value 

	Number of Processors 
	2  

	Memory Size (RAM) 
	8 GB 

	Hard Drive Size 
	60 GB 

	OS 
	Windows 10 Enterprise Build 2009/20H2 

	Network Mode 
	NAT 

	VMWare Tools Version 
	12.1.5.20735119 

	Shared Folders Enabled 
	Yes 


 
 	 

7.18	R	Standard Browser Installation Process 
· 3.5.4.1 – Environment Configuration Process) 
Table 28 outlines the versions of Google Chrome and Mozilla Firefox used. 
 

Figure 25 – The full process used to install Google Chrome and Mozilla Firefox onto the data generation environment. 
Figure created by author using (diagrams.net, 2023). 
 
· Go Back (Section 3.5.4.1 – Environment Configuration Process) 
Table 28 – Versions of Google Chrome and Mozilla Firefox used during data generation. 
	Application 
	Version 
	Source 

	Google Chrome 
(Normal Installer) 
	111.0.5563.63 
(Official Build) 
	https://www.google.com/intl/en_uk/chrome/ 

	Mozilla Firefox 
(Normal Installer) 
	110.0.1 
	https://www.mozilla.org/en-GB/firefox/new/ 


 
 	 
Seth H 	SOC10701  	   40510741 

Appendix  – 
Go Back (Section 

Page 10 of 116 
 
Page 10 of 116 
 
Page 10 of 116 
 
7.19	S	Webpages Selected for Data Generation 
	• 	3.5.4.2 – Data Generation Process) 
Table 29 contains the list of webpages that will be visited in the order they are presented. 
Table 29 – Table of websites visited to generate the data used for the evaluation of the cache parsers. 
	Visit 
Order 
	Website Name 
	URL 
	Watch Duration (excl. advert times) 

	1 
	BBC 
	https://www.bbc.co.uk/news 
	N/A 

	2 
	The Guardian 
	https://www.theguardian.com/uk 
	N/A 

	3 
	YouTube 
	https://www.youtube.com/ 
	N/A 

	4 
	TED – 7 new species of robot that jump, dance, and walk on water 
	https://www.ted.com/talks/dennis_hong_ 7_new_species_of_robot_that_jump_dan ce_and_walk_on_water/comments 
	1 minute 


 
 	 
7.20	T	Cache Parser Commands 
· 3.6.2.1 – Quantitative Evaluation Process) 
· Go Back (Section 4.2 – Changes) 
Table 30 provides a list of example commands used which will be used to execute the cache parsers. 
Table 31 shows the cache folder paths which will be passed to the cache parsers. 
Table 30 – Example commands that will be used to execute the individual cache parsers. 
	Cache Parser 
	Example Commands 

	ChromeCacheView 
	chromecacheview.exe -folder “…” /sxml “…” /copycache “” “” 
/CopyFilesFolder "…" /UseWebSiteDirStructure 0 

	MZCacheView 
	mzcacheview.exe -folder “…” /sxml “…” /copycache “” “” 
/CopyFilesFolder "…" /UseWebSiteDirStructure 0 

	MVP Cross-Browser 
Cache Parser 
	cache_parser.exe –cache-dir “…” –output-dir “…” –log-path “…” -report_formats xml –extract-cached-resources 


 
Table 31 – Cache folder paths that will be used during the evaluation. 
	Browser 
	Cache Folder Path 

	Chrome 
	C:\Users\Admin\Desktop\Cache_Artefacts\Google\Chrome\User 
Data\Default\Cache\Cache_Data 

	Firefox 
	C:\Users\Admin\Desktop\Cache_Artefacts\Mozilla\Firefox\Profiles\ 
76ncd19y.default-release\cache2 


 
 	 
7.21	U	Quantitative Evaluation Metrics 
	• 	3.6.2.1 – Quantitative Evaluation Process) 
Table 32 – Performance-based metrics collected from the cache parsers during the evaluation. 
	Metric 
	Monitoring Tool / Method 

	Total number of cached webpage resources identified 
	Count the number of entries present in the generated XML report. 

	Total number of cached webpage resources recovered 
	Count the number of recovered webpage resources that are outputted by the parser. 

	Percentage of process time used 
(% Processor Time) 
	Windows Performance Monitor 

	Amount of memory consumed 
(Working Set – Private) 
	

	Total IO Data Operations per second 
(IO Data Operations / sec) 
	


 
 	 
7.22	V	Qualitative Evaluation Questions 
	• 	3.6.2.2 – Qualitative Evaluation Process) 
Table 33 – Comparative questions asked to qualitatively evaluate the capabilities of the cache parsers. 
	Comparison Questions 

	What browsers are supported by the cache parser? 

	What report formats do the cache parsers support? 

	What information is extracted from the browser’s cache files? 


 
 	 
Seth H 	SOC10701  	   40510741 
 Appendix  – 
Go Back (Section 
Appendix  – 
Go Back (Section 
Appendix  – 
Go Back (Section 

Page 10 of 116 
 
Page 10 of 116 
 
Page 10 of 116 
 
7.23	W – Full Evaluation Process 
	• 	3.6.3 – Evaluation Process) 
 

Figure 26 - The evaluation process used to evaluate the performance of the cache parsers. 
Figure created by author using (diagrams.net, 2023). 
 	 
7.24	X	Windows Performance Monitor 
	• 	3.6.3 – Evaluation Process) 
Figure 27 outlines the process used to collect performance metrics for each of the cache parsers. 
This flowchart was based on the process outlined by (Tableau, n.d.). 
 

Figure 27 – The process used to collect performance metrics for each of the cache parsers during the evaluation. 
Figure created by author using (diagrams.net, 2023). 
 	 
7.25	Y	Evaluation Process Changes 
	• 	4.2 – Changes) 
Table 34 outlines the updated versions of the commands that were used for each of the metrics.  
Table 35 shows the changed paths which were passed to the cache parsers during the evaluation. 
Table 34 – The actual commands that were used to execute the cache parsers during the evaluation. 
	Cache Parser 
	Example Commands 

	ChromeCacheView 
	chromecacheview.exe -folder “…”  /copycache “” “” /CopyFilesFolder 
"…" /UseWebSiteDirStructure 0 

	
	chromecacheview.exe -folder “…”  /sxml “…” 

	MZCacheView 
	mzcacheview.exe -folder “…” /copycache “” “” /CopyFilesFolder "…" 
/UseWebSiteDirStructure 0 

	
	mzcacheview.exe -folder “…” /sxml “…” 

	MVP Cross-Browser 
Cache Parser 
	cache_parser.exe –cache-dir “…” –output-dir “…” –log-path “…” – report-formats xml –extract-cached-resources 


 
Table 35 – The actual cache folder paths that were used during the evaluation. 
	Browser 
	Cache Folder Path 

	Chrome 
	C:\Users\Admin\Desktop\Cache_Artefacts\Google\Chrome\User 
Data\Default\Cache\Cache_Data 

	Firefox 
	C:\Users\Admin\Desktop\Cache_Artefacts\Mozilla\Firefox\Profiles\ 
76ncd19y.default-release\cache2\entries 


 
 	 
Appendix 
Go Back (Section 
Appendix  – 
Go Back (Section 
Appendix  – 
Go Back (Section 

Page 10 of 116 
 
Page 10 of 116 
 
Page 10 of 116 
 
7.26 Appendix Z	The Cache Parser’s Command-Line Integration 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) Figure 28 shows the code used to implement the CLI Integration process into the cache parser. Figure 29 shows the cache parser’s help message. 
[image: ] 
Figure 28 – The cache parser code used to implement the CLI Integration process. 
 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
[image: ] 
Figure 29 – The cache parser’s help message displaying the arguments and flags it accepts. 
 	 

7.27 Appendix AA – The Cache Parser’s Cache Identification Functionality 
	• 	Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
[image: ] 
Figure 30 – The cache parser code used to implement the multi-browser cache identification process. 
7.28 Appendix AB – The Cache Parser’s Chrome Parsing Mechanism 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
Figure 31 shows the code used to control the parsing of Chrome’s cache files. Figure 32 shows the code used to parse Chrome’s index file, and Figure 33 shows the code used to parse Chrome’s cache entries. 
[image: ] 
Figure 31 – The code used to control the parsing of Chrome’s index files and cache entries. 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
[image: ] 
Figure 32 - The code used to parse Chrome's index file. 
 	 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
[image: ] 
Figure 33 - The code used to parse Chrome's cache entries. 
	 	 – 



Page 100 of 116 
 
Page 100 of 116 
 
Page 100 of 116 
 
7.29 Appendix AC – The Cache Parser’s Firefox Parsing Mechanism 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
Figure 34 shows the code used to control the parsing of Firefox’s cache files. Figure 35 shows the code used to parse Firefox’s index file, and Figure 36 shows the code used to parse Firefox’s cache entry files. 
[image: ] 
	34	The code used to control the parsing of Firefox’s index files and cache entry files. 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
[image: ] 
Figure 35 – The code used to parse Firefox’s index file. 
 	 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
[image: ] 
	36	The code used to parse Firefox’s cache entries. 
7.30 Appendix AD – Examples of The Cache Parser’s Cache Structures 
	• 	Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
Figure 37 shows an example of the cache structures defined in the code. 
[image: ] 
Figure 37 - Example of the cache structures defined in the cache parser's code. 
 	 
7.31 Appendix AE – The Cache Parser’s Recovery Mechanism 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
Figure 38 shows the process used recover and recreate the cached webpage resource for Google Chrome. 
Figure 39 shows the two functions used to output the recovered cached webpage resource. 
[image: ] 
	38	The code used to recover and recreate the cached webpage resources for Google Chrome. 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
[image: ] 
Figure 39 – The code used to organise and output the recovered cached webpage resources. 
Seth H 	SOC10701  	   40510741 



Figure 	 – 
Page 106 of 116 
 
Figure 	 – 
Page 106 of 116 
 
Page 100 of 116 
 
7.32 Appendix AF – The Cache Parser’s Reporting Mechanism 
	• 	Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
[image: ] 
Figure 40 – The code used to format the extracted cache information into a report. 
 	 
7.33 Appendix AG – The Cache Parser’s Error Handling and Logging 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
Figure 41 shows the initialisation of logging and examples of it being used to inform the status of the cache parser’s execution.  
Figure 42 shows an example of what the logs looks like. 
[image: ] 
Figure 41 – The code used to initialise the cache parser’s logging and output status updates to the log file. 
· Go Back (Section 4.3 – Technical Artefact – MVP Cross-Browser Cache Parser) 
 
Figure 
42
 
-
 
An example of the cache parser's log file
.
 

 	 

7.34 Appendix AH – Full Quantitative Evaluation Results 
· Go Back (Section 4.4.1 – Quantitative Evaluation Results) 
Table 36 – Full results for the quantitative evaluation of the MVP Cross-Browser Cache Parser and ChromeCacheView against chrome cache files. 
	 
	
	MVP Cross-Browser  
Cache Parser  
(Chrome) 
	ChromeCacheView 

	Percentage of processor time used 
(%) 
	1 
	77.80 
	32.34 

	
	2 
	97.44 
	32.58 

	
	3 
	92.26 
	20.58 

	
	Avg. 
	89.17 
	28.50 

	Amount memory consumed 
(MB) 
	1 
	83.92 
	3.93 

	
	2 
	119.04 
	3.64 

	
	3 
	123.01 
	2.45 

	
	Avg. 
	108.66 
	3.34 

	IO Read/Write Operations per second 
	1 
	395.61 
	304.14 

	
	2 
	N/A 
	247.77 

	
	3 
	N/A 
	283.77 

	
	Avg. 
	395.61 
	278.56 


 
 	 
· Go Back (Section 4.4.1 – Quantitative Evaluation Results) 
Table 37 – Full results for the quantitative evaluation of the MVP Cross-Browser Cache Parser and MZCacheView against firefox cache files. 
	 
	
	MVP Cross-Browser  Cache Parser  
(Firefox) 
	MZCacheView 

	Percentage of processor time used 
(%) 
	1 
	89.22 
	61.70 

	
	2 
	90.70 
	44.37 

	
	3 
	89.91 
	27.33 

	
	Avg. 
	89.94 
	44.47 

	Amount memory consumed 
(MB) 
	1 
	247.36 
	3.59 

	
	2 
	243.57 
	3.84 

	
	3 
	238.56 
	3.73 

	
	Avg. 
	243.16 
	3.72 

	IO Read/Write Operations per second 
	1 
	655.13 
	534.08 

	
	2 
	566.61 
	750.84 

	
	3 
	708.75 
	1022.56 

	
	Avg. 
	643.50 
	769.16 


 
Page 100 of 116 
 
Page 100 of 116 
 
Page 100 of 116 
 
image27.jpeg
Search reputable
repository using relevant
keywords and date fiters

‘Based on tites,
are the retumed results
relevant?

Use different keyword
combination or date fiters
(potentially no recent
research on the topic)

Select a hand ull of resuts
‘which Iook relevant based
o their fitles.

Read the abstract|

cover the desired
scope and
s i relevant?

Discard, and go to the.
next source

Use s 3 primary

source, and move onto
next source.

Yes

Read the introduction
and conclusion

isitst Yo

o | Keep the source as it can siil
relevant?

lbe used for criical analysis, bu|

Read the rest of the iz

source.

fs itfuy
relevant?

fs itfuy
accurate?

|maybe don' use it as a primany|
Source. Goto next source.





image28.jpg
Data generation
‘environment

| preparation process.

Close Google
Chrome.

Open Mozilla

Firefox.

Copy the
“C\Users\Admin\AppDatalLocal\Google™
AND.
"C:\Users\Admin\AppDatalLocallMozill"
folders out of the data generation
‘environment and start the evaluation

process.




image29.jpeg
Data generation
‘environment

| preparation process.

Close Google
Chrome.

Open Mozilla

Firefox.

Copy the
“C\Users\Admin\AppDatalLocal\Google™
AND.
"C:\Users\Admin\AppDatalLocallMozill"
folders out of the data generation
‘environment and start the evaluation

process.




image30.jpg
SYNOPTIC PROJECT GANTT CHART

PRosect e symtopic Project _ MLESTONE 2:

PROIECT sTART DATE omm

il vz va | vl ws | ve | wr | we | ve | wo | wn | wa | wo | ws | ws | we | we | we | we s wa|wz|va

P — B S 7l n PI- N T 7 EROR Y ) )  R )  ) p
iele | St | e v

o iwwaven oo [ v s v

| socpmndiovew oo |z | vz oo | iz

D on | oz | vz oz | v

| v aumion s | oz vz vz [z

14| Objectives oo | o7/11/22| 1aniiz| o7z | iz | i i (O i

| raronae s | o7z vz oz iz

o [ en o |ounvas | s | avnvaa | v |4

o1 | rroaion s | uivz | o oz | 4

x| peton o e e T Gt o | ooz | vz | oz v | 4

23 poroon ararrvet wab owing Copasies o | sz o oz | 4

T T r—————r——— ez | vz | o | woum| 4
25 | summary

20 Metmodeiogy

| | omm | o] .
1wovzs ovesas wwovas weums a7
o1/ | caioara | 010172 | csfoarzs
oz | oaroara | 100172

10172 | caioaas | r9/01/2 |csioarzs
Vo2 | aaioara | 010172 |asioarzs

12| vl e

34| Project wanagemant vathods

35| Eperiment Hetnocs 2a/0123 | 0w | 26/

17| svoketion weoss 26i0123 | owcarn | 26101

58| sommon 28/0123 | 0w | 26001
1wiovzs | 208
vsoarm | iz
ooz | ooz

Voo | zmoarzs

40| Resuls and Discusion
o | cronger

2| Tachniza Atafoct-MVP CroeBroasr Gache P
1| sets 1 - Guaitotve

0| Ran2- cuanttate sz |
0| summary ooz | zioarzs
50| conclusion 20 osiouzs

51| summony ot ingings 0wz | oo

52| Comparion wih ital im 2oz | os0un
oz | oo
oz | osourm

oz | os0um

53| von Conmbutons

50| o wen,

3535358535353 8RB RI0G

se | sehopprasol oz | osour





image31.jpeg
SYNOPTIC PROJECT GANTT CHART

PRosect e symtopic Project _ MLESTONE 2:

PROIECT sTART DATE omm

il vz va | vl ws | ve | wr | we | ve | wo | wn | wa | wo | ws | ws | we | we | we | we s wa|wz|va

P — B S 7l n PI- N T 7 EROR Y ) )  R )  ) p
iele | St | e v

o iwwaven oo [ v s v

| socpmndiovew oo |z | vz oo | iz

D on | oz | vz oz | v

| v aumion s | oz vz vz [z

14| Objectives oo | o7/11/22| 1aniiz| o7z | iz | i i (O i

| raronae s | o7z vz oz iz

o [ en o |ounvas | s | avnvaa | v |4

o1 | rroaion s | uivz | o oz | 4

x| peton o e e T Gt o | ooz | vz | oz v | 4

23 poroon ararrvet wab owing Copasies o | sz o oz | 4

T T r—————r——— ez | vz | o | woum| 4
25 | summary

20 Metmodeiogy

| | omm | o] .
1wovzs ovesas wwovas weums a7
o1/ | caioara | 010172 | csfoarzs
oz | oaroara | 100172

10172 | caioaas | r9/01/2 |csioarzs
Vo2 | aaioara | 010172 |asioarzs

12| vl e

34| Project wanagemant vathods

35| Eperiment Hetnocs 2a/0123 | 0w | 26/

17| svoketion weoss 26i0123 | owcarn | 26101

58| sommon 28/0123 | 0w | 26001
1wiovzs | 208
vsoarm | iz
ooz | ooz

Voo | zmoarzs

40| Resuls and Discusion
o | cronger

2| Tachniza Atafoct-MVP CroeBroasr Gache P
1| sets 1 - Guaitotve

0| Ran2- cuanttate sz |
0| summary ooz | zioarzs
50| conclusion 20 osiouzs

51| summony ot ingings 0wz | oo

52| Comparion wih ital im 2oz | os0un
oz | oo
oz | osourm

oz | os0um

53| von Conmbutons

50| o wen,

3535358535353 8RB RI0G

se | sehopprasol oz | osour





image32.jpg
| Parse command line
‘arguments inputted by
user

Does user
inputted cache
directory exist?

Set the cache directory to
the users current working
directory

Recursively iterate
through the inputted
cache directory.

regex for Chrome's

Start parsing Start parsing
Chromes cache Firefox’s cache
lles. lles.





image33.jpeg
| Parse command line
‘arguments inputted by
user

Does user
inputted cache
directory exist?

Set the cache directory to
the users current working
directory

Recursively iterate
through the inputted
cache directory.

regex for Chrome's

Start parsing Start parsing
Chromes cache Firefox’s cache
lles. lles.





image34.jpg
/index fie’

Log error and finish

presentin £

e parsing chrome's
s cache files.

(Open Chrome's index
il

Parse Index Header.

Iterate through the.
index file's hash table.

Extract and parse the |
cache address(es).

lterate through the extracted
cache addresses, and open
the cache flle containing it

respective cache entry.

Parse the Cache Entry.

Parse the cache address in the
long key field, and exiract the
key bytes from the cache fl ifs
located in.

Extractthe key bytes from
the Key field n the current
cache entry.

Vaiidate the integrty of
the key's hashes

Extract and parse the data sream
cache addresses pointing to the
raw bytes of the HTTP Response.
and the cached webpage resource.

Yes

Collate all parsed
information for this cache
entry, and i specified,
output the raw bytes of
the cached viebpage
resource.

Decompress the raw
bytes of the cached
wiebpage resource.

stream content
contain "HTTP"2

Extract the HTTP
Headers.

Repeat this process to
parse all cache entries.
Once finished, start the.
Reporting Mechanism




image35.jpeg
/index fie’

Log error and finish

presentin £

e parsing chrome's
s cache files.

(Open Chrome's index
il

Parse Index Header.

Iterate through the.
index file's hash table.

Extract and parse the |
cache address(es).

lterate through the extracted
cache addresses, and open
the cache flle containing it

respective cache entry.

Parse the Cache Entry.

Parse the cache address in the
long key field, and exiract the
key bytes from the cache fl ifs
located in.

Extractthe key bytes from
the Key field n the current
cache entry.

Vaiidate the integrty of
the key's hashes

Extract and parse the data sream
cache addresses pointing to the
raw bytes of the HTTP Response.
and the cached webpage resource.

Yes

Collate all parsed
information for this cache
entry, and i specified,
output the raw bytes of
the cached viebpage
resource.

Decompress the raw
bytes of the cached
wiebpage resource.

stream content
contain "HTTP"2

Extract the HTTP
Headers.

Repeat this process to
parse all cache entries.
Once finished, start the.
Reporting Mechanism




image36.jpg
dex file’

[ m———"
/presenin Skip processing the index fle

)>——> and go straight to parsing
e s s s

mmer»/

Yes

Open Firefox's index
.

Parse Index Header.

Iterate and parse each of
the cache records held in
the index file after the
header.

Iterate through Firefox's
cache entry folder and parse.
‘each of the enry iles,

Check fthe entry fie was
located in the st of cache
records present in Firefox’s
cache flle (ist will be empy if
o index file was present).

Decode the key, and
extract the source URL.

from the key.

Extract and parss the.
‘metadata elements.
(including the HTTP.
Response headers) |

Retrieve the offset to
the metadata content

Extract the key bytes
ffom the metadata
header, and veriy its

Decompress the raw
bytes of the cached
webpage resource.

Extract the raw bytes of |
the cached vebpage
resource from the tartof
the entr fle

Parse the metadata |
header based on the

cache fle's version
‘number

|

Collate all parsed
iinformation for this cache.
entry, and i specified,

output the raw bytes of
the cached webpage
resource.

Repeat this process to
parse allfles in Firefox's
cache entries folder. Once




image37.jpeg
dex file’

[ m———"
/presenin Skip processing the index fle

)>——> and go straight to parsing
e s s s

mmer»/

Yes

Open Firefox's index
.

Parse Index Header.

Iterate and parse each of
the cache records held in
the index file after the
header.

Iterate through Firefox's
cache entry folder and parse.
‘each of the enry iles,

Check fthe entry fie was
located in the st of cache
records present in Firefox’s
cache flle (ist will be empy if
o index file was present).

Decode the key, and
extract the source URL.

from the key.

Extract and parss the.
‘metadata elements.
(including the HTTP.
Response headers) |

Retrieve the offset to
the metadata content

Extract the key bytes
ffom the metadata
header, and veriy its

Decompress the raw
bytes of the cached
webpage resource.

Extract the raw bytes of |
the cached vebpage
resource from the tartof
the entr fle

Parse the metadata |
header based on the

cache fle's version
‘number

|

Collate all parsed
iinformation for this cache.
entry, and i specified,

output the raw bytes of
the cached webpage
resource.

Repeat this process to
parse allfles in Firefox's
cache entries folder. Once




image38.jpg
Extractthe raw bytes of the

cached webpage resource from

the appropriate browser cache.
le.

Retrieve the mime from the raw
‘ bytes of the cached webpage
resource to identify compression
method used
P S
Relrieve the content encoding

from the HTTP Response
header.

Does the content
encoding equal
@zip?

Does the mime Does the content
encoding equal

stream'? b2,

Yes

Decompress the raw
bytes of the cached
viebpage resource

using GZIP.

Decompress the raw
bytes of the cached
viebpage resource
using B

Yes.

Rerieve the original filename of
the cached wiebpage resource
from the URL which is extracted
ffom the cache information.

Identity the extension type for
the cached wiebpage resource
based on original filename or the.
content type extracted from the
‘extracted HTTP headers.

PR —

Create a unique filename for the
recovered webpage resource
wihich was cached by the users
browser.

Outine the raw bytes of the cached
webpage resource to 2 fle named
after the unicue flename generated
previously {o present the recoversd
webpage resource.




image39.jpeg
Extractthe raw bytes of the

cached webpage resource from

the appropriate browser cache.
le.

Retrieve the mime from the raw
‘ bytes of the cached webpage
resource to identify compression
method used
P S
Relrieve the content encoding

from the HTTP Response
header.

Does the content
encoding equal
@zip?

Does the mime Does the content
encoding equal

stream'? b2,

Yes

Decompress the raw
bytes of the cached
viebpage resource

using GZIP.

Decompress the raw
bytes of the cached
viebpage resource
using B

Yes.

Rerieve the original filename of
the cached wiebpage resource
from the URL which is extracted
ffom the cache information.

Identity the extension type for
the cached wiebpage resource
based on original filename or the.
content type extracted from the
‘extracted HTTP headers.

PR —

Create a unique filename for the
recovered webpage resource
wihich was cached by the users
browser.

Outine the raw bytes of the cached
webpage resource to 2 fle named
after the unicue flename generated
previously {o present the recoversd
webpage resource.




image40.jpg
Program Start

Initialise command fine
functionlty

Initialise third argument
“log-path’ to allow user

Iniaiise frst argument
I*~cache-dir" to allow user ol

Initiaise second argument
“—output-di" to allow user to

point to a directory point to a directory where :hl;':;m “:" ﬂvﬁcr:n'::
containing browser cache hey would like o store any b oy
toofs log fles fo be.
. ouiput s, S

(" intitise tastargument
“—organise-output” o alow
user o oggle whether they
want o organise the cached

‘Webpage resources ino
folders deccribing thef ype
When they are extracted

Initialise ifth argument
“~output-cached-resource:
to allow user to toggle
wihether they want to extract
and output the recovered
webpage resources.

Initilise fourth argument
"report-formats” {0 allow the
user to specily their desired
report formats. Restricted to
SO, "GV, Xl "Xisx

If argument isn't used by the
\user, defaultto JSON format.

She——

Ifthe argument isn't present,

Ifthe argument isn't present, (o et be e
4

\{nese fies won' be dumped.
- - 4

Retrieve the user's
desired log path

Default o the users
current working
directory.

Configure logging
using the specified
path

Create a folder called

s Does ™| ive oupu inthe
s st curent worang drecor,
L and use this.
ves
Retrve e cache -
et D8
e ueer
l Yes
T Retrevs e Retvvs he specfed || Retrive he bookean
identt iy boolean value for report formats (defaulted ‘value for outputting the
. Crganing ne "0 JSON o ormate sivacisd ueosede
L output directory. ‘specified by user) resources.

Default o the user's
current working

directory.





image41.jpeg
Program Start

Initialise command fine
functionlty

Initialise third argument
“log-path’ to allow user

Iniaiise frst argument
I*~cache-dir" to allow user ol

Initiaise second argument
“—output-di" to allow user to

point to a directory point to a directory where :hl;':;m “:" ﬂvﬁcr:n'::
containing browser cache hey would like o store any b oy
toofs log fles fo be.
. ouiput s, S

(" intitise tastargument
“—organise-output” o alow
user o oggle whether they
want o organise the cached

‘Webpage resources ino
folders deccribing thef ype
When they are extracted

Initialise ifth argument
“~output-cached-resource:
to allow user to toggle
wihether they want to extract
and output the recovered
webpage resources.

Initilise fourth argument
"report-formats” {0 allow the
user to specily their desired
report formats. Restricted to
SO, "GV, Xl "Xisx

If argument isn't used by the
\user, defaultto JSON format.

She——

Ifthe argument isn't present,

Ifthe argument isn't present, (o et be e
4

\{nese fies won' be dumped.
- - 4

Retrieve the user's
desired log path

Default o the users
current working
directory.

Configure logging
using the specified
path

Create a folder called

s Does ™| ive oupu inthe
s st curent worang drecor,
L and use this.
ves
Retrve e cache -
et D8
e ueer
l Yes
T Retrevs e Retvvs he specfed || Retrive he bookean
identt iy boolean value for report formats (defaulted ‘value for outputting the
. Crganing ne "0 JSON o ormate sivacisd ueosede
L output directory. ‘specified by user) resources.

Default o the user's
current working

directory.





image42.jpg
Parse command line
‘arguments inputed by
user

report formai
specified?

Default 0 JSON

Create st of Cache fle
specified report identiication
formats process

Parse the browsers
icache files, extracting
all cache information

Create st of dictionaries
containing all extracted

Dump all extracted
‘cache information to
JSON fle in
Gesignated dump

directory

(Dump all extracted
cache information to
XLSX e in
designated dump

| dectory

Dump all extracted
cache information to
XML flle in
designated dump

directory

Dump all extracted

designated dump
rectory




image43.jpeg
Parse command line
‘arguments inputed by
user

report formai
specified?

Default 0 JSON

Create st of Cache fle
specified report identiication
formats process

Parse the browsers
icache files, extracting
all cache information

Create st of dictionaries
containing all extracted

Dump all extracted
‘cache information to
JSON fle in
Gesignated dump

directory

(Dump all extracted
cache information to
XLSX e in
designated dump

| dectory

Dump all extracted
cache information to
XML flle in
designated dump

directory

Dump all extracted

designated dump
rectory




image44.jpg
sic

Folder containing the fullsource code
for the cross-browser cache parser.

e

cache_parser.py

Main script controling the processing
flow of the cache parser.

Contains functions to control the CLI
integration, logging configuration,
and mult-browser cache

idenification.

firefox.

base

Folder containing the.
scripts nesded to parse
Firefox's cache files.

—

Folder containing the.
base functionalty
which the Firefox and
Chrome classes

structs

objects

Folder containing the.
cache structures used

to parse Firefox's cache.

Folder containing the.
scripts used to control
the flow used to parse
Firefox's diferent cache

chrome

Folder containing the.
scripts nesded to parse
Chrome's cache fies.

fies
i

fles
1)

fi_index_structpy

l_cache_parser.py

FirefoxIndexteader
FirefoxIndexecord

FirefoxCacheparser

Scrpt used to define the
structure of Firefox's
index file header and

tecords
1

Scrpt containing the
FirefoxCacheParser
class which inherits
rom the base Cache
dlass and is used to
controlthe parsing of
Firefox's cache files.

innert o ¢:|:l
¢ structs. objects
=
S
Focercomamngthe, | CE AR
Suiptconanng rebass | | SClesterestses | 0T
e e Ciromss aret
i e sy R
functionality that is ¢
B
Firefox and Chrome (such cchrome_index_struct.py chrome_cache_parser.py.
‘as decompression).
Sarstusedto dene | | Septconaming e
s otComss || CromaCacherarer
St e
ety

R—

class and s used to

chrome_iru_data.py

controlthe parsing of
Chrome's cache fils.

ff_cache_structpy.

1

Metadatateader rdeny
MetadatatieaderV1 Eenion
‘Script used to define the | | Script containing the
structure of the Firefoxindex class used

metadata headers
located in Firefox's
cache entry fes

to parse Firsfoxs index

fie
i

ff_cache_entry.py

Tuioats |
Script used to define the
S| [
o pern
Chrome's index file ChromeIndex
header. Script containg the

7 b

e

chrome_entry_storepy| | ndextie

FirefoxCacheEntry

Script containing the
FirefoxCacheEntry
class which inherits
from the base Cache
class and is used to
parse Firefox's cache
entry fles

Script used to define the
structure of the cache

(chrome_cache_address.py|

e ChroneCacheaddr
Chrome's cache fies. Script containing the
ChromeCacheAddr

class used to parse.
Chrome's cache
audresses.

i

lchrome_cache_entry.py

ChromeCacheEntry

Script containing the
ChromeCacheEntry
class which inherits
from the base Cache
class and is used to
parse the cache entries
located in Chrome's
cache fes.

i

chrome_hash.py

‘Script containing the
SuperFastHashing
algorithm used by’
Chrome.





image45.jpeg
sic

Folder containing the fullsource code
for the cross-browser cache parser.

e

cache_parser.py

Main script controling the processing
flow of the cache parser.

Contains functions to control the CLI
integration, logging configuration,
and mult-browser cache

idenification.

firefox.

base

Folder containing the.
scripts nesded to parse
Firefox's cache files.

—

Folder containing the.
base functionalty
which the Firefox and
Chrome classes

structs

objects

Folder containing the.
cache structures used

to parse Firefox's cache.

Folder containing the.
scripts used to control
the flow used to parse
Firefox's diferent cache

chrome

Folder containing the.
scripts nesded to parse
Chrome's cache fies.

fies
i

fles
1)

fi_index_structpy

l_cache_parser.py

FirefoxIndexteader
FirefoxIndexecord

FirefoxCacheparser

Scrpt used to define the
structure of Firefox's
index file header and

tecords
1

Scrpt containing the
FirefoxCacheParser
class which inherits
rom the base Cache
dlass and is used to
controlthe parsing of
Firefox's cache files.

innert o ¢:|:l
¢ structs. objects
=
S
Focercomamngthe, | CE AR
Suiptconanng rebass | | SClesterestses | 0T
e e Ciromss aret
i e sy R
functionality that is ¢
B
Firefox and Chrome (such cchrome_index_struct.py chrome_cache_parser.py.
‘as decompression).
Sarstusedto dene | | Septconaming e
s otComss || CromaCacherarer
St e
ety

R—

class and s used to

chrome_iru_data.py

controlthe parsing of
Chrome's cache fils.

ff_cache_structpy.

1

Metadatateader rdeny
MetadatatieaderV1 Eenion
‘Script used to define the | | Script containing the
structure of the Firefoxindex class used

metadata headers
located in Firefox's
cache entry fes

to parse Firsfoxs index

fie
i

ff_cache_entry.py

Tuioats |
Script used to define the
S| [
o pern
Chrome's index file ChromeIndex
header. Script containg the

7 b

e

chrome_entry_storepy| | ndextie

FirefoxCacheEntry

Script containing the
FirefoxCacheEntry
class which inherits
from the base Cache
class and is used to
parse Firefox's cache
entry fles

Script used to define the
structure of the cache

(chrome_cache_address.py|

e ChroneCacheaddr
Chrome's cache fies. Script containing the
ChromeCacheAddr

class used to parse.
Chrome's cache
audresses.

i

lchrome_cache_entry.py

ChromeCacheEntry

Script containing the
ChromeCacheEntry
class which inherits
from the base Cache
class and is used to
parse the cache entries
located in Chrome's
cache fes.

i

chrome_hash.py

‘Script containing the
SuperFastHashing
algorithm used by’
Chrome.





image46.jpg
On the "Select
Installation Methor
screen, drag and drop
the downloaded
Windows 10 iso file.
=

‘When choosing the.

firmware type, select

“UEFI" and click
Continue.

Launch VMWare ‘Select File = New" Unselect "Easy

Instalr

Fusion on the tool bar

When on the "Finisn”
page, select
“Customize seftings”
and click Continue.

Go back to the VM sefiings.

click on "Processors & Savethe VM toa

folder of your choice,

Click on "Sharing”, enable

‘Shared Folders, and add a (Opet.Ine VM seltings

Memory", select 2 processor ifit hasn't opened
new Shared Folder, giving it naming it
cores and set the memory to e automatically. el

8192 MB.

-

Startthe virtual machine
and click "OK” on any
Pop-ups.

— )
Follow the Windows Select "Nor or "Skip” to

-Select you fookos, any optional add-ons,

rossany ke o oot instaton proess a5
Up ram GOND, homal eaing e T i as loaurs
‘Windows 10 Enterprise OS. ik updates.

Sign in with a microsoft
/account, or domain join
instead.

Select "No' or “Skip' or
“Decine’ o any optional adg-
ons, such as onine speech
recognition, location, find my
device, improving inking &
typing, tallored experiences,

and ADs.

P
R
et e |
Sl
e hias Fas o
bar and select "Install |

i

Fill out the account

creation process as

necessary, naming the.
‘account "Admin”.

When the prompt Whentheprompt ) (¢
Croose uhet o do i “Choo uhet o & v e i | Gl Insar nen ik
dic..~ shows, click t an disc.. shows, cick t an for VMWare Tool, clek |, “Finisi” oncs complete
select’Run | select "Run meklhee | | andrestart the VM.
| setupbdexe” 4 setup6d.exe”. § y \

(Once rebooted, shutdown the|
VM and create a snapshot of
the clean VM by clicking

["Virtual Machine > Snapshots,
> Take Snapshot” on the.
VMWare Fusion tool bar.





image47.jpeg
On the "Select
Installation Methor
screen, drag and drop
the downloaded
Windows 10 iso file.
=

‘When choosing the.

firmware type, select

“UEFI" and click
Continue.

Launch VMWare ‘Select File = New" Unselect "Easy

Instalr

Fusion on the tool bar

When on the "Finisn”
page, select
“Customize seftings”
and click Continue.

Go back to the VM sefiings.

click on "Processors & Savethe VM toa

folder of your choice,

Click on "Sharing”, enable

‘Shared Folders, and add a (Opet.Ine VM seltings

Memory", select 2 processor ifit hasn't opened
new Shared Folder, giving it naming it
cores and set the memory to e automatically. el

8192 MB.

-

Startthe virtual machine
and click "OK” on any
Pop-ups.

— )
Follow the Windows Select "Nor or "Skip” to

-Select you fookos, any optional add-ons,

rossany ke o oot instaton proess a5
Up ram GOND, homal eaing e T i as loaurs
‘Windows 10 Enterprise OS. ik updates.

Sign in with a microsoft
/account, or domain join
instead.

Select "No' or “Skip' or
“Decine’ o any optional adg-
ons, such as onine speech
recognition, location, find my
device, improving inking &
typing, tallored experiences,

and ADs.

P
R
et e |
Sl
e hias Fas o
bar and select "Install |

i

Fill out the account

creation process as

necessary, naming the.
‘account "Admin”.

When the prompt Whentheprompt ) (¢
Croose uhet o do i “Choo uhet o & v e i | Gl Insar nen ik
dic..~ shows, click t an disc.. shows, cick t an for VMWare Tool, clek |, “Finisi” oncs complete
select’Run | select "Run meklhee | | andrestart the VM.
| setupbdexe” 4 setup6d.exe”. § y \

(Once rebooted, shutdown the|
VM and create a snapshot of
the clean VM by clicking

["Virtual Machine > Snapshots,
> Take Snapshot” on the.
VMWare Fusion tool bar.





image48.jpg
Set-up and configure
the data generation i
environment. z

Set-up and configure &

‘same process.

opens, close i

[ Ifthe Chrome browser

Navigate to Chrome's cache foider

CAUsers\Admin\AppDatalL ocaliGoogle\ChromelUser
Data\Defaulf\CachelCache_Data

Delete all of the
lles n this folder.

Jete all fles in the)
entiies folder of
Firefox's cache
Tolder.

‘Shutdown VM and
take a snapshot to
save progress.

Click "Yes" to allow the app
to make changes o the
device, and the install will

Navigate back to
the shared folder
and execute the
installe for Firefox

Download the standard
nstallers or the latest
ersions of Google Chrome|
and Mozila Firefox using
their offiial Sources.

automatically start.

browser installers out of
the second, separate
environment and into the.
data generation
environment via shared
Tolders
Navigate to the shared folder

and execute the installer for
Chrome.

((Glick™Yes" to allow the app
to make changes to the

device, and the instal il
‘automatically start.

o
|

findex file is
present delete it CAUsers\Admin\AppDatalLocaliMozilla|Firefox\Profiles\
<.-release>\cache2\

1fthe Firefox
browser opens,
dlose i

Navigate to Firefox's cache folder

-





image49.jpeg
Set-up and configure
the data generation i
environment. z

Set-up and configure &

‘same process.

opens, close i

[ Ifthe Chrome browser

Navigate to Chrome's cache foider

CAUsers\Admin\AppDatalL ocaliGoogle\ChromelUser
Data\Defaulf\CachelCache_Data

Delete all of the
lles n this folder.

Jete all fles in the)
entiies folder of
Firefox's cache
Tolder.

‘Shutdown VM and
take a snapshot to
save progress.

Click "Yes" to allow the app
to make changes o the
device, and the install will

Navigate back to
the shared folder
and execute the
installe for Firefox

Download the standard
nstallers or the latest
ersions of Google Chrome|
and Mozila Firefox using
their offiial Sources.

automatically start.

browser installers out of
the second, separate
environment and into the.
data generation
environment via shared
Tolders
Navigate to the shared folder

and execute the installer for
Chrome.

((Glick™Yes" to allow the app
to make changes to the

device, and the instal il
‘automatically start.

o
|

findex file is
present delete it CAUsers\Admin\AppDatalLocaliMozilla|Firefox\Profiles\
<.-release>\cache2\

1fthe Firefox
browser opens,
dlose i

Navigate to Firefox's cache folder

-





image1.jpg
Chrome

Edge

Safari

Firefox

Opera

Other

1

2585%

3.07%

8.32%

7.95%

10.29%

0%

4%

28%

2%

ss%

70%




image50.jpg
- ~
Transier the generated - =
(Create two folders onthe|  (Unzip ChromeCacheView| L

3o e 20 et e
environment creation onto the evaluation aeor forted S McCocew deskiop on the folder
and set-up environment via the CotmecachieView and) ek Iepecie ok called "Cache Artefacts”.
stonment v e e C
S (ST 4 .
EERRmEs p [ e e
s W Crsto s rapenat| |, S50
Evcombonioces < “cachedwanpegerotowess < St vauaion | |CEGESTRRINO! o eldrs) o ne
(Phase 2) identified and exiracted using pocess (Bhase ) environment ared Eouler Mo e
‘the files outputted by the e e ke
S — ot e
Calecith eired
e
T Gon o
e indone
gm..nw Homtor,
/Cumnare the features
femnes) Bratecon Contius re and capebitis of e
& Evaluation process cache parsers based
S e i plae
‘metric. ‘evaluation results. ([~ LK PIE CouK
4 comparison questions.





image51.jpeg
- ~
Transier the generated - =
(Create two folders onthe|  (Unzip ChromeCacheView| L

3o e 20 et e
environment creation onto the evaluation aeor forted S McCocew deskiop on the folder
and set-up environment via the CotmecachieView and) ek Iepecie ok called "Cache Artefacts”.
stonment v e e C
S (ST 4 .
EERRmEs p [ e e
s W Crsto s rapenat| |, S50
Evcombonioces < “cachedwanpegerotowess < St vauaion | |CEGESTRRINO! o eldrs) o ne
(Phase 2) identified and exiracted using pocess (Bhase ) environment ared Eouler Mo e
‘the files outputted by the e e ke
S — ot e
Calecith eired
e
T Gon o
e indone
gm..nw Homtor,
/Cumnare the features
femnes) Bratecon Contius re and capebitis of e
& Evaluation process cache parsers based
S e i plae
‘metric. ‘evaluation results. ([~ LK PIE CouK
4 comparison questions.





image52.jpg
{Perfommence Monkior 2= Data Collector Sets. then select Data ChromeCacheView Neit

T S s Right-click on User | (Enter a name for the data |

Launch Windows. Select Create manually

Inthe left pane, expand | |Defined, select New, and| collector set - £.0, (thianicad) s therl ek
S kN ator: Collector Set. | | Performance.

I Under the Instances ol

‘selected object, select the.
ey T | ) ;
‘performance metrics on. " Selectthe | ‘computer> is selected, (Setthe Sample Interval Under Create data logs,
e e e o e

o s o, o b e e e
S oty WG (sl
S

e — i e o

\ 0 Data Operstionssec. | (Once a3 courtrsrs|(Save e tacollctor| | promance montor

‘ Working Set - Private tnen Next. choice. Click Finish. created data collector

(7o calectne performance| - 3
P et woR) | eons v | ((Crmemoleg| (O ecmi o

process and created a New| name of the collector set format to Comma
DataCollectord1 in the|
Data Collector Set for each | and click Start. It can then Separated. Click o i

of the cache parsers be stopped by selecting Apply and then Ok e

Stop. ) 8 _





image53.jpeg
{Perfommence Monkior 2= Data Collector Sets. then select Data ChromeCacheView Neit

T S s Right-click on User | (Enter a name for the data |

Launch Windows. Select Create manually

Inthe left pane, expand | |Defined, select New, and| collector set - £.0, (thianicad) s therl ek
S kN ator: Collector Set. | | Performance.

I Under the Instances ol

‘selected object, select the.
ey T | ) ;
‘performance metrics on. " Selectthe | ‘computer> is selected, (Setthe Sample Interval Under Create data logs,
e e e o e

o s o, o b e e e
S oty WG (sl
S

e — i e o

\ 0 Data Operstionssec. | (Once a3 courtrsrs|(Save e tacollctor| | promance montor

‘ Working Set - Private tnen Next. choice. Click Finish. created data collector

(7o calectne performance| - 3
P et woR) | eons v | ((Crmemoleg| (O ecmi o

process and created a New| name of the collector set format to Comma
DataCollectord1 in the|
Data Collector Set for each | and click Start. It can then Separated. Click o i

of the cache parsers be stopped by selecting Apply and then Ok e

Stop. ) 8 _





image2.jpeg
Chrome

Edge

Safari

Firefox

Opera

Other

1

2585%

3.07%

8.32%

7.95%

10.29%

0%

4%

28%

2%

ss%

70%




image54.jpg
59 def cli_integration() -> Namespace:
"“"Tnitialises and sets-up the command line arguments.

62 Configures argparse to take in command line arguments and flags.

63 Allows the user to specify paths to folders holding browser cache files and folders to store
output files. While also specifying the desired report formats and whether or not they want
to dump the cached webpage resources extracted from the cache file content.

Returns:
The args variable which contains the path argument inputted by the user,
and the two boolean values determining whether the user set the
chrome/firefox flags

parser: ArgumentParser = ArgumentParser(
description="Parse a directory containing browser cache files.\n")

7€ cache_dir_default: Path = Path().absolute()
77 output_dir_default: Path = Path().absolute() / 'MVP_Output'
78 log_path_default: Path = Path().absolute()

parser.add_argument('--cache-dir', help='The directory containing the browser cache files."',
default=cache_dir_default)
parser.add_argument ('--output-dir', help='The directory to output any files to.',
default=output_dir_default)
parser.add_argument('--log-path', help='The location to store the parser\'s log files.",
default=log_path_default)
parser.add_argument('--report-formats', help='The format of the produced report which '
‘contains all extracted cache information. '
88 'Choices include "json", "csv", "xml", and "xlsx',
nargs='+',
default="json',
91 choices=[jsont it csviimiim | Olis it ]
parser.add_argument('--extract-cached-resources', help='Flag which when True will extract all '
'of the cached webpage resources.',
action='store_true')
parser.add_argument('--organise-output', help='Flag which when True, will organise the cached '
‘webpage resources which are dumped to the system '
'into folders based on their type.',
action='store_true')

args: Namespace = parser.parse_args()

02 return args




image55.jpg
C:\Users\Admin\Desktop>cache_parser.exe -h

usage: cache_parser.exe [-h] [--cache-dir CACHE_DIR] [--output-dir OUTPUT_DIR] [--log-path LOG_PATH]
[--report-formats {json,csv,xml,xlsx} [{json,csv,xml,xlsx} ...]] [--extract-cached-resources]
[--organise-output]

Parse a directory containing browser cache files.

options:

-h, --help show this help message and exit

--cache-dir CACHE_DIR
The directory containing the browser cache files.

--output-dir OUTPUT_DIR
The directory to output any files to.

--log-path LOG_PATH The location to store the application's log files.

--report-formats {json,csv,xml,x1sx} [{json,csv,xml,x1sx} ...]
The format of the produced report which contains all extracted cache information. Choices
include "json", "csv", "xml", and "xlsx

--extract-cached-resources
Flag which when True will extract all of the cached webpage resources.

--organise-output Flag which when True, will organise the cached webpage resources which are dumped to the
system into folders based on their type.

C:\Users\Admin\Desktop>




image56.jpg
def identify cache_dir(cache_dir: Path, output_dir: Path,
extract_cached_resources: bool, report_formats: list(str],
organise_output: bool) -> None:

Recursively scan the given cache directory to find Chrome and Firefox cache folders.

Takes the cache directory inputted by the user and scans the directory for all subdirectories
and files. From these files, it takes the root directory of item in the inputted cache directory
and searches for Chrome and Firefox cache folders.

If the cache folders are present, then the parsing of the cache files can start.

Args:
cache_dir: The path pointing to the location of the cache files.
output_dir: The path pointing to the location of the output directory.
extract_cached_resources: A boolean value indicating whether or not the cached webpage

resources should be extracted and dumped.
report_formats: A list of chosen file formats to output the info file.
organise_output: A boolean value indicating whether the extracted cached webpage resources
should be organised into separate directories.

app_log: logging.Logger = logging.getLogger(‘app_log')
chrome_flag: bool = False
firefox_flag: bool = False

try:
app_log. info('Attenpting to identify cache file type.

for root,
try:
# Attempt to locate Chrome's cache folder
if re.search(CHROME_REGEX, root):
chrome_flag = True
app_Log. info(*Chrome cache folder identififed: {%s}', root)

_ in os.walk(cache_dir, topdown = False):

# Start parsing chrome cache files
ChromeCacheParser (cache_dir = Path(root),
output_dir = output_dir,
extract_cached_resources = extract_cached_resources,
report_formats = report_formats,
organise_output = organise_output)

# Attempt to locate Firefox's cache folder
if re.search(FIREFOX_REGEX, root):
if firefox_flag:
continue
firefox_flag = True
app_log. info('Firefox cache folder identififed: {%s}', root)

# Start parsing chrome cache files
FirefoxCacheParser (cache_dir = Path(root),
output_dir = output_dir,
extract_cached_resources = extract_cached_resources,
report_formats = report_formats,
organise_output = organise_output)

except Exception as
continue

assert(chrone_flag is True), 'Unable to find Chrome cache files. '
assert(firefox_flag is True), 'Unable to find Firefox cache files. '

except AssertionError as error:
app_log.error(‘Issue when attempting to find cache files: {%s}', error)
except FileNotFoundError as error:
app_log.error(‘File not found when attempting to find cache files: {%s}', error)
except Exception as error:
app_Log.error(*Unknown exception occurred when attempting to find *
‘cache files: {%s}', error)




image57.jpg
def __init_ (self, cache_dir: Path, output_dir: Path, extract_cached_resources: bool,

report_format
lass constructor.

list[str], organise_output: bool) -> None:

Handles the initiation of the ChromeCacheParser class with it's attributes alongside the
parsing of both the Chrome index file and Chrome's cache entries - and then
finishes by creating the report for Chrome's cache.

Args:

cache_dir: The path pointing to the location of the cache files.

output_dir: The path pointing to the location of the output directory.

extract_cached_resources: A boolean value indicating whether or not the cached webpage

resources should be extracted and dumped.

report_formats: A list of chosen file formats to output the info file.

organise_output: A boolean value indicating whether the extracted cached webpage
resources should be organised into separate directories.

# Attributes

self.cache_dir: Path = cache_dir

self.output_dir: Path = output_dir
self.extract_cached_resources: bool = extract_cached_resources
self.report_formats: list[str] = report_formats
self.organise_output: bool = organise_output
self.cache_entry_list: list([ChromeCacheEntry] = []

self.log: logging.Logger = logging.getLogger(‘app_log")

# Chrome Index Parsing
index_path: Path = self.cache_dir / 'index'

if Path.exists(index_path):
self.log.info('Parsing Chrome\'s index file.')
self.chrome_index: ChromeIndex = ChromeIndex(index_path)
self.log.info('Finished parsing Chrome\'s index file.')

# Chrome Cache Entry Parsing

try:
self.log.info('Parsing Chrome\'s cache entries.
self._parse_cache_entries()
self.log.info('Finished parsing Chrome\'s cache entries. ')

except AssertionError as error:
self.log.error('Parsing the cache entries for Chrome was unsuccessful: {%s}', error

# Information Dumping
self._create_chrome_report ()

else:
self.log.critical('Processing Failed - No index file present in Chromes cache folder.')




image58.jpg
(]

def _parse_index_file(self) —> None:
Class method used to perform the parsing operation on the
index file.

Works by opening the index file, parsing the header of the index file and then
parsing the index file's hash table to retrieve the cache addresses.

# Open the index file
with open(self.index_path, 'rb') as index_file:

# Read the header of the index file

self.iheader_content = index_file.read(sizeof (ChromeIndexHeader))

assert(len(self.iheader_content) > 0), ('No content extracted from Chrome\'s '
'index file header.')

# Copy the bytes into an instance of the ChromeIndexFileHeader struct
self.index_header = ChromeIndexHeader. from_buffer_copy(self.iheader_content)

# Validate the file signature
if self.index_header.magic == 3238251203:

# Retrieve the length of the hash table

table_len: int = self.index_header.table_len

assert(table_len > 0), ('Length of the hash table received from index '
*header is invalid.')

# Iterate through the index file's hash table
for _ in range(table_len):

# Read 4 bytes at a time (little endian) to retrieve each of the cache addresse
cache_addr: int = int.from_bytes(index_file.read(4),

byteorder="little’,

signed=False)

# Check if the cache address is valid
if cache_addr != 0:

# Parse the cache address and append it to the list
self. cache_addresses.append (ChromeCacheAddr ( cache_addr) )

assert(len(self.cache_addresses) > @), ('No cache addresses were extracted from *
‘the index file header. ')

else:
self.log.error('The index file\'s signature does not match Chrome\'s file '
*signature. ')




image59.jpg
3 def __init_ (self, addr: ChromeCacheAddr, cache dir: Path, output_dir: Path,
3 extract_cached_resources: bool, organise_output: bool) -> None:
Class constructor to the ChromeCacheEntry class.

Handles the initiation of the ChromeCacheEntry class to parse and store the cache entry
8 bytes.

330 Args:

addr: A ChromeCacheAddr object which containing the information pointing to this
cache entry.

cache_dir: The path pointing to the location of the cache files.

output_dir: The path pointing to the location of the output directory.

extract_cached_resources: A boolean value indicating whether or not the cached webpage

33 resources should be extracted and dumped.

organise_output: A boolean value indicating whether the extracted cached webpage

resources should be organised into separate directories.

self.cache_addr: ChromeCacheAddr = addr
self.cache_dir: Path = cache_dir

43 self.output_dir: Path = output_dir
self.extract_cached_resources: bool = extract_cached_resources

34 self.organise_output: bool = organise_output

self.log: logging.Logger = logging.getLogger(‘app_log")

self.cache_file_path: str =

4 self._data_strean_content: list(bytes] = []

3 self.decompressed_data: bytes = b''

self.children: list(ChromeCacheEntry] = []

51 self.http_header: dict[str, Any] | None = {}
self.dunped_filenane: str
self.dunped_filesize: int

# Read the cache entry
self.entry_content: bytes = self._read_bytes(addr, sizeof(ChromeEntryStore))
assert(len(self.entry_content) > @), ('No entry content extracted for cache entry located '
f'in {self.cache_addr.filename} *
f'at offset {self.cache_addr.block_offset}.

# Store the cache entry
self.cache_entry: ChromeEntryStore = ChromeEntryStore. from_buffer_copy(self.entry_content)

# Extract the hash key
self.key: str = self._extract_key()
if not self.key:
self.log.warning('Unable to extract the key for cache entry locate in {%s} at '
‘offset {%s}', self.cache_addr.filenane, self.cache_addr.block_offset)

# Validate the hash key
self.integrity: bool = self._validate_keys()
if not self.integrity:
self.log.warning('Validation of the cache entry key located in {%s} at offset {%s} '
‘failed’, self.cache_addr.filenane, self.cache_addr.block_offset)

376 # Retrieve the data stream addresses for the HTTP response and cached content
self._get_data_stream()

y # Parse the data streams for the HTTP responses and their content
self._process_data_streas()

# Generate the information for this cache entry
self._gen_chrome_entry_report()

# Check if the next attribute of the cache address is populated
381 if self.cache_entry.next:

# Capture all child entries

next_entry: ChromeCacheEntry = ChromeCacheEntry(ChromeCacheAddr(self.cache_entry.next),
) { self.cache_dir, self.output_dir,
self.extract_cached_resources,
9 self.organise_output)
self.children.append(next_entry)
self.children.extend(next_entry.children)





image3.jpg
GET /hello.txt HTTP/1.1
User-Agent: curl/7.641
Host: . example. com

Accept-Language: en, mi




image60.jpg
00 def __init_ (self, cache dir: Path, output_dir: Path, extract_cached_resources: bool,
1 report_formats: list(str], organise_output: bool) —> None:
lass constructor.

Handles the initiation of the FirefoxCacheParser class with it's attributes alongside the
0 parsing of both the Firefox index file, and Firefox's cache enties - and then
0 finishes by creating the report for Firefox's cache.

Args:

] cache_dir: The path pointing to the location of the cache files.

o output_dir: The path pointing to the location of the output directory.

extract_cached_resources: A boolean value indicating whether or not the cached webpage

2 resources hould be extracted and dumped.

3 report_formats: A list of chosen file formats to output the info file.

organise_output: A boolean value indicating whether the extracted cached webpage
resources should be organised into separate directories.

8 # Attributes
] self.cache_dir: Path = cache_dir
self.output_dir: Path = output_dir
21 self.extract_cached_resources: bool = extract_cached_resources
1 self.report_formats: list[str] = report_formats
self.organise_output: bool = organise_output
2 self.cache_entry_list: list[FirefoxCacheEntry] = []
self.log: logging.Logger = logging.getLogger(‘app_log")

1 # Firefox Index Parsing
8 index_path: Path = self.cache_dir / 'index'
ff_index: FirefoxIndex | None = None

| # Check if the index file exists in the inputted cache directory
if Path.exists(index_path):
ff_index = FirefoxIndex(index_path)

# If it does not exist, check the parent directory
else:
parent_index_path: Path = self.cache_dir.parent / *index’
if Path.exists(parent_index_path):
f_index = FirefoxIndex(parent_index_path)
else:
self.log.warning('No index file found in Firefoxs cache folder.'

13 # Firefox Cache Entry Parsing
try:

14 self.log.info('Parsing Firefox\'s cache entries.')

self._parse_cache_entries(ff_index)

self.log.info('Finished parsing Firefox\'s cache entries.')

except AssertionError as error:
S0 self.log.error(‘Encountered issues while parsing Firefox\'s cache entries: *
1 *{%s}*, error)

# Dump Cache Information
4 self._create_firefox_report()




image61.jpg
def _parse_file(self) —> None:
"“Class method used to perform the parsing operating on the index file.

This method opens the index file, parses the index file's header, and then parses the
index file's records.

self.log.info('Parsing Firefox\'s index file.')

# Open the index file
with open(self.index_path, 'rb') as index_file:

# Parse the index file's header
header_content: bytes = index_file. read(sizeof (FirefoxIndexHeader))
assert(len(header_content) > @), 'Unable to parse the header of the firefox index file'

self.header: FirefoxIndexHeader = FirefoxIndexHeader. from_buffer_copy(header_content)
# Parse the index file's records by retrieving number of record in file
eof: int = os.fstat(index_file.fileno()).st_size
nun_of_records: int = ((eof - sizeof (FirefoxIndexHeader)) // sizeof (FirefoxIndexRecord)
for _ in range(nun_of_records):

record_content: bytes = index_file. read(sizeof (FirefoxIndexRecord))

if record_content:

self.records.append(FirefoxIndexRecord. from_buffer_copy(record_content))

assert(len(self.records) > 0), 'No records extracted from the firefox index file'

if self.header and self.records:
self.log.info('Successfully parsed the firefox index file {%s}', self.index_path)

self.log.info('Finished parsing Firefox\'s index file.')




image62.jpg
6

def

arse_file(self) —> None:
Class method used to perform the parsing operating on the
firefox cache file.

Opens the target cache file, retrieves the metadata offset, retrieves the raw bytes of the
cached content, reads the metadata header, extracts the key, extracts the source URL,
parses the rest of the cache file's metadata elements, and finally decompresses the raw

bytes of the cached webpage resource.

# Open the file
with open(self.file_path, 'rb') as file:

# Retrieve the offset of the metadata content (-4 from End of File)
eof: int = os.fstat(file.fileno()).st_size

file. seek(eof-4)

self.metadata_offset: int = int.from_bytes(file.read(), 'big")

# Retrieve the raw content of the webpage resource (not the metadata)
file.seek(0)
self.data_content: bytes = file. read(self.netadata_offset)
if not self.data_content:
self.log.debug('No file content extracted for the cache entry located in {%s}',
self. cache_filenane)

# Calculate the hash count (i.e., the number of chunks)
self.nunber_of_chunks: int = int(math.ceil(self.metadata_offset / CHUNK_SIZE))

# Skip the metadata hashes to get straight to the metaoffset

# 4 = Integirty Hash of Metadata

# (2 * self.number_of_chunks) = Hashes of Response (requested file) chunks
file.read(4 + (2 * self.number_of_chunks))

# Retrieve the cache file version present in the metadata header
self.cache_file_version: int = int.from_bytes(file.read(4), 'big')

# Parse the specific version of metadata header
file: BufferedReader = self._parse_metadata_header (file)

# Verify the integrity of the key
self.key_content: bytes = file.read(self.netadata_header.key_size)
if not self.key_content:
self.log.debug(‘Unable to extract the key from the metadata header in {%s}',
self. cache_filenane)
self._verify_key_integrity()

self.source_url: str

# Extract the key

if self.key_content:
self.key: str = self.key_content.decode('ascii’)
# Parse the key to get the source url
self._get_source_url()

# Parse the rest of the metadata elements.
current_pos: int = file.tell()
element_content_size: int = (eof - current_pos - 4) # -4 to account for metadata offset

self.element_content: bytes = file.read(element_content_size)
if not self.element_content:
self.log.debug('Extraction of the metadata elements unsuccessful in {%s}',
self.cache_filenane)
self._parse_metadata_elements{)]

# Determine the compression method used to store the webpage resource
elenent_key: str = ‘original-response-headers’
self.http_headers: dict[str, Any] | None = self.elements.get(element_key, None)
if not self.http_headers:
self.log.debug(‘Unable to extract HTTP headers from firefox cache file {%s}',
self. cache_filenane)

self.decompressed_data = self.decompress_data(self.data_content, self.http_headers)




image63.jpg
class ChromeIndexHeader (LittleEndianStructure):
""“Struct used to define the structure of the index file header, used in the ChromeIndex class.

This struct is used to parse the header of chrome's index file, storing the contents of the
header in each of it's fields.

Fields:
magic: File signature (C1 03 CA C3)
version: Version of the cache
num_entries: Total number of entries currently stored
old_v2_nun_bytes: Totoal size of the stored data, in versions 2.x
last_file: Last external file created
this_id: ID for all entries being changed (dirty flag)
stats: Stroage for usage data
table_len: Actual size of teh table (8 = kIndexTablesize)
crash: Signals a previous crash
experiment: ID of an ongoing test
create_time: Creation time for this set of files
nun_bytes: Total size of the stored data, in version 3.0
pad: Padding
ru: Eviction control data

_fields_: list[tuple[str, Any]] = [
(*magic', c_uint32),
(version', c_uint32),
('num_entries', c_int32),
(*old_v2_num_bytes', c_int32),
("last_file', c_int32),
("this_id', c_int32),
('stats', c_uint32),
("table_len', c_int32),
(*crash', c_int32),
(*experiment’, c_int32),
('create_time', c_uint64),
(*num_bytes', c_int64),
(*pad’, c_int32450),

(*lru’, LRUData)





image64.jpg
# If cached files were extracted, set the appropriate values
if len(self.deconpressed_data) 1= 0:

ext:

stri=

self.resource_name: str = '*
self.mine: str=''
report_keys: list[str] = ['Cached Webpage Resource', ‘Original Filename',

‘Estimated Filesize (Bytes)', 'Stored Filename']

# If the key was extracted from the cache entry
if self.key:

split_key: list[str] = self.key.split()

self.entry_report['Entry Key'l = self.key
self.entry_report[*URL'] = split_key[-1]
self.entry_report['Web Site'] = split_key[1]
self.entry_report[*Frame'] = split_key[@]

# Retrieve the original filename of the cached webpage resource
self.resource_name: str = self.retrieve_requested_filename(split_key[-11)

# Retrieve the extension of the cached webpage resource
ext = self.retrieve_file_extension(self.http_header, self.resource_name)

# Add the extracted filenane of the cached resource to the dict
if ext in self.resource_name and ext != '
self.entry_report [report_keys[0]] [report_keys[11] = self.resource_name

# Add the estimated file size of the cached resource to the dict
est_filesize: int = len(self.decompressed_data)
self.entry_report[report_keys[8]] [report_keys[2]] = est_filesize

# Generate a ungiue filename to store the cache file
dump_fname: str = self.generate_dunp_filename(ext, self.cache_entry.data_addr)
self.entry_report[report_keys(0]][report_keys[3]] = dump_fname

# Write the cached file contents to a file
if self.extract_cached_resources:

else:

self.dunp_file_contents(self.output_dir,
dump_fname,
self.decompressed_data,
self.organise_output)

self.log.debug(‘No file content was extracted and decompressed for the *

‘cache entry located in {%s} at offset {%s}', self.cache_addr.filename,

self.cache_addr.block_offset)




image65.jpg
def organise_output_dir(self, type dir: Path) -> Path:
Class method used to organise the output directory into categories.

Organises the output directory by creating categories to sort the extracted cached content,
based on the type (mime) of the cached content.

8 Args:
5¢ type_dir: The path pointing to the location of the output directory.

Returns:
A type-based path of a directory which describes the type of file being dumped (e.g.,

image, video, javascript, etc.).

# Create categorised folders for dumping files
type_path: Path = type_dir
68 gquessed_type: str | None = mimetypes.guess_type(self.resource_nane) [0]

70 # Create the type directory based on the guessed type
if guessed_type:

type_path = type_path / guessed_type.upper()
elif self.mine and self.nime != 'image/*':

type_path = type_path / self.mime.upper()
else:

type_path = type path / 'UNCATEGORISED'

278 return type_path

81 def dump_file_contents(self, output_dir: Path, dump_fname: str, data: bytes,
organise_output: bool) > None:

"“"Class method used to dump extracted cached content (i.e., the cached webpage

resources which has been extracted by the parser).

Takes the output location, and then writes the decompressed cache content to the file.

288 Args:

output_dir: The path pointing to the location of the output directory.

dump_fname: The unique filenane used to store the raw bytes of the cached webpage
resource.

data: A byte string containing the raw bytes of the cached webpage resource.

organise_output: A boolean value indicating whether the extracted cached webpage,
resources should be organised into separate directories.

# Retrieve the output location

type_dir: Path = output_dir / 'Extracted_resources'
if organise_output:
type_dir = self.organise_output_dir(type_dir)

os.makedirs(type_dir, exist_ok=True)

# Create the full output path
output_path: Path = type_dir / dump_fname

# Write the content to the file

try:

with open(output_path, 'wb') as dump_file:
dump_file.write(data)





image66.jpg
def create_report(self, output_dir: Path, filename: str, data: listldict[str, Anyl],
report_formats: list[str]) -> Non
"Class method used to create the browser cache's reports.

) Takes the output location, and then writes the all information relating to the browser's
cache to a specified file format, located in the output location.

Args:
output_dir: An instance of a Path object which points to the chosen output directory.
filename: A string with the report's filename.
data: A list of report data containing extracted cache information.
report_formats: A list of selected file formats used to output reports.

try:

# Check if there's any information to be dumped

if len(data) == 0:
self.log.info('No information to be dumped for: {%s}', dir)
return

if *json' in report_formats:
self.create_json_report (output_dir = output_dir / Path(filename + *.json'),
data = data)

34 if 'xlsx' in report_formats:
4 self.create_xlsx_report (output_dir = output_dir / Path(filename + *.xlsx'),
4 data ata)

if ‘csv' in report_formats:
self.create_csv_report(output_dir = output_dir / Path(filename + '.csv'),
data ata)

if xml' in report_formats:
self.create_xnl_report(output_dir = output_dir / Path(filename + *.xml'),
data = data)

except FileNotFoundError as error:

4 self.log.error(‘Unable to open provided file: {%s}', error)
except Exception as error:

! self. log.error( 'Unexpected error: {%s}', error)




image67.jpg
def main() -> None:
“""Main function controlling the flow of the application.

This main function calls individual functions to initialise CLI arguments, handle the user

inputs, and begin the process of identifying cache files.

start: int = time.perf_counter_ns()

# Configure the script's CLI arguments and flags
args: Namespace = cli_integration()

# Configure the script's logging functionality
log_path: Path = Path(args.log_path)
if not log_path.exists():

log_path = Path().absolute()

configure_logging (log_name="app_log*, log_file_path=str(log_path / ‘app_log.log"),
str_format="%(asctime)s - {%(module)s:%(lineno)d:%(levelname)s} ~ %(message)s’,

app_log: logging.Logger = logging.getLogger(‘app_log')
app_log. info('Starting the Cache Parser*)

# Configure the output directory
output_dir: Path = Path(args.output_dir)

if not output_dir.exists():
app_log.warning(*Specified output directory does not exist.')

output_dir = Path().absolute() / 'MVP_Output’
os.makedirs(output_dir, exist_ok=True)

app_log.info('Output Directory: {%s}', output_dir)

# Process the inputted cache dir
cache_dir: Path = Path(args.cache_dir)

if not cache_dir.exists():
cache_dir = Path().absolute()

app_log.info('Source Cache Directory: {%s}', cache_dir,)

report_formats: list[str] = args.report_formats

extract_cached_resources: bool = args.extract_cached_resources

organise_output: bool = args.organise_output

# Identify cache files from cache dir

identify_cache_dir(cache_dir, output_dir, extract_cached_resources, report_formats,
organise_output)

end: int = time.perf_counter_ns()

app_log. info( Execution time: %.4f', (end - start) / 1000000000)




image68.jpg
2023-03-15
2023-03-15
2023-03-15
2023-03-15
2023-03-15
2023-03-15
2023-03-15
2023-03-15
2023-03-15
2023-03-15
2023-03-15
2023-03-15

View Help
3:08,074
3:08,074

113:08,074

3:08,074

113:08,080
113:08,089

:13:34,637

- Starting the Cache Parser
Output Directory: {C:\Users\Adnin\Desktop\NVP_Output\Firefox}

- {cache_parser Source Cache Directory: {Ci\Users\Adnin\Desktop\Cache Artefacts\tozilla\Firefox\Profiles\7encdisy. default-release\cache2\entries}
- {cache_parser: Attenpting to identify cache file type.

- {cache_parser:152:INFO) - Firefox cache folder identififed: {C:\Users\Adnin\Desktop\Cache Artefacts\Hozilla\Firefox\Profiles\76ncd19y. default-release\cache2\entries}
- {ff_index:40:INFO} - Parsing Firefox's index file.

- {#f_index:63:NFO} - Successfully parsed the firefox index file {C:\Users\Adnin\Desktop\Cache Artefacts\Hozilla\Firefox\Profiles\76ncd1oy.default-release\cache2\index}
- {Ff_index:65:INFO} - Finished parsing Firefox's index file.

- {ff_cache_parser:147:INFO} - Parsing Firefox's cache entries.

- {Ff_cache_parser:149:INFO} - Finished parsing Firefox's cache entries.

- {cache_parser:168:UARNING) - Unable to find Chrome cache files.

- {cache_parser:229:INFO} - Execution time: 26.5674

H
H
H





image69.jpeg
2023-03-15
2023-03-15
2023-03-15
2023-03-15
2023-03-15
2023-03-15
2023-03-15
2023-03-15
2023-03-15
2023-03-15
2023-03-15
2023-03-15

View Help
3:08,074
3:08,074

113:08,074

3:08,074

113:08,080
113:08,089

:13:34,637

- Starting the Cache Parser
Output Directory: {C:\Users\Adnin\Desktop\NVP_Output\Firefox}

- {cache_parser Source Cache Directory: {Ci\Users\Adnin\Desktop\Cache Artefacts\tozilla\Firefox\Profiles\7encdisy. default-release\cache2\entries}
- {cache_parser: Attenpting to identify cache file type.

- {cache_parser:152:INFO) - Firefox cache folder identififed: {C:\Users\Adnin\Desktop\Cache Artefacts\Hozilla\Firefox\Profiles\76ncd19y. default-release\cache2\entries}
- {ff_index:40:INFO} - Parsing Firefox's index file.

- {#f_index:63:NFO} - Successfully parsed the firefox index file {C:\Users\Adnin\Desktop\Cache Artefacts\Hozilla\Firefox\Profiles\76ncd1oy.default-release\cache2\index}
- {Ff_index:65:INFO} - Finished parsing Firefox's index file.

- {ff_cache_parser:147:INFO} - Parsing Firefox's cache entries.

- {Ff_cache_parser:149:INFO} - Finished parsing Firefox's cache entries.

- {cache_parser:168:UARNING) - Unable to find Chrome cache files.

- {cache_parser:229:INFO} - Execution time: 26.5674

H
H
H





image11.jpg
GET /hello.txt HTTP/1.1
User-Agent: curl/7.641
Host: . example. com

Accept-Language: en, mi




image4.jpg
HTTP/1.1 288 0K
Date: Hon, 27 Jul 2889 12:28:53 GUT.

Server: Apache

Last-Hodified: Wed, 22 Jul 2009 19:15:56 GNT
ETag: “34a2387-d-13686688

Accept-Ranges: bytes

Content-Length: 51

Vary: Accept-Encoding

Content-Type: text/plain

Hello World! My content includes a trailing CRLF.




image5.jpeg
HTTP/1.1 288 0K
Date: Hon, 27 Jul 2889 12:28:53 GUT.

Server: Apache

Last-Hodified: Wed, 22 Jul 2009 19:15:56 GNT
ETag: “34a2387-d-13686688

Accept-Ranges: bytes

Content-Length: 51

Vary: Accept-Encoding

Content-Type: text/plain

Hello World! My content includes a trailing CRLF.




image6.jpg
cache-request-directive =

"no-cache" [ "=" <"> 1#field-name <"> ]
"no-store"

"max-age " delta-seconds
"max-stale” [ delta-seconds ]
"min-fresh" "=" delta-seconds

"only-if-cached"
cache-extension

cache-response-directive =

"public"

"private" [ "=" <"> 1#field-name <"> ]
"no-cache" [ "=" <"> 1#field-name <"> ]
"no-store"

"no-transform"
"must-revalidate”
"proxy-revalidate"

"max-age" "=" delta-seconds
cache-extension




image7.jpeg
cache-request-directive =

"no-cache" [ "=" <"> 1#field-name <"> ]
"no-store"

"max-age " delta-seconds
"max-stale” [ delta-seconds ]
"min-fresh" "=" delta-seconds

"only-if-cached"
cache-extension

cache-response-directive =

"public"

"private" [ "=" <"> 1#field-name <"> ]
"no-cache" [ "=" <"> 1#field-name <"> ]
"no-store"

"no-transform"
"must-revalidate”
"proxy-revalidate"

"max-age" "=" delta-seconds
cache-extension




image8.jpg
First Request

Has the resource
alieady been cached”
No, fetch from server.

Request to www.bbc co uk/index html

Client Browser Wep

fe Response Sorvr

Store Response

|

Client's Local
Browser Cache





image9.jpeg
First Request

Has the resource
alieady been cached”
No, fetch from server.

Request to www.bbc co uk/index html

Client Browser Wep

fe Response Sorvr

Store Response

|

Client's Local
Browser Cache





image10.jpg
Subsequent Requests to www.bbc.co.uk/index.html

Has the resource
already been cached?
Yes. fetch from local
cache.

Wep
Server

Client Browser

Fetch the Response.

Retum the Response:

Client's Local
Browser Cache





image11.jpeg
Subsequent Requests to www.bbc.co.uk/index.html

Has the resource
already been cached?
Yes. fetch from local
cache.

Wep
Server

Client Browser

Fetch the Response.

Retum the Response:

Client's Local
Browser Cache





image12.jpg
7 Internet/Chat

Internet/Chat Files ( 148 / 148)

=) Chrome Browser (42 /42)

) Chrome Browser Files (42 /42)
) Bookmarks File (1/1)
Cache Index File (34/34)
=) Cookies File (3/3)
History File (2/2)

Login Data File (1/1)
i) Top Sites File (1/1)

=) Internet Explorer Browser (83 /83)
=) Internet Shortcut ( 18 / 18)

=) Mozilla Files (5/5)





image13.jpeg
7 Internet/Chat

Internet/Chat Files ( 148 / 148)

=) Chrome Browser (42 /42)

) Chrome Browser Files (42 /42)
) Bookmarks File (1/1)
Cache Index File (34/34)
=) Cookies File (3/3)
History File (2/2)

Login Data File (1/1)
i) Top Sites File (1/1)

=) Internet Explorer Browser (83 /83)
=) Internet Shortcut ( 18 / 18)

=) Mozilla Files (5/5)





image14.jpg
~ Internet/Chat

Internet/Chat Files ( 148 / 148)

=) Chrome Browser (41/41)

=) Chrome Browser Files (41/41)
=) Cache Index File (34 34)

‘=) Cookies File (3/3)

=) History File (2/2)

) Login Data File (1/1)

=) Top Sites File (1/1)

=) Internet Explorer Browser (84 /84)
&) Internet Shortcut ( 18 / 18)

=) Mozilla Files (5/5)





image15.jpeg
~ Internet/Chat

Internet/Chat Files ( 148 / 148)

=) Chrome Browser (41/41)

=) Chrome Browser Files (41/41)
=) Cache Index File (34 34)

‘=) Cookies File (3/3)

=) History File (2/2)

) Login Data File (1/1)

=) Top Sites File (1/1)

=) Internet Explorer Browser (84 /84)
&) Internet Shortcut ( 18 / 18)

=) Mozilla Files (5/5)





image16.jpg
Artifacts Normal browsing Private browsing

Bookmarks

cookies

Extension cookies

Safe browsing cookies

History—visits

History—searches

History—downloads

XiR [ [R [ = [=] ==

Top sites

Username - -




image17.jpeg
Artifacts Normal browsing Private browsing

Bookmarks

cookies

Extension cookies

Safe browsing cookies

History—visits

History—searches

History—downloads

XiR [ [R [ = [=] ==

Top sites

Username - -




image18.jpg
& - § 8% p 3§ gz¢ £k
& A © oF & 2 £3 - 1]
JEIT | meerkat o] 2 0 [ » 1 F——
{:2'::; 330 g ";’ 1gg+ g WebCacheV0l.dat + logs, $130 in
T A o I o cache folders, Deleted fles in
b [ 0 | 66+ [100r | 0 i ik
Firefox | meerkat 0| o o | 4 | 0
Youtube o o [10 [ 6 | 0
bbe.co.uk 0| o 0o [ 0 | o Memory dump
ooglecom/search | 0 | 0 | 0 | 6 | 0
zoogle.com 0 | o | 100+ | 100+ | 0
Chrome | meerkat o o [ o [ 3]0
Youtube 0 0 [ 10 [100r] 0
bbe.couk o o0 [ o [8 |0 Menmory dump
google.com/search | 0 | 0 0o [ 2 | 0
‘oogle.com 0 [ 0| 100+ [ 100+ | 0
Opera | _meerkat 0] o 0 [ 3 | 0 Memory dump
Youtube 0o 0 [ 2 [17 [0
bbe.couk 0| o 0 | 57 | 0
google.com/search | 0 | 0 | 0 1 0
zoogle.com o | o 100+ 100+ | o





image19.jpeg
& - § 8% p 3§ gz¢ £k
& A © oF & 2 £3 - 1]
JEIT | meerkat o] 2 0 [ » 1 F——
{:2'::; 330 g ";’ 1gg+ g WebCacheV0l.dat + logs, $130 in
T A o I o cache folders, Deleted fles in
b [ 0 | 66+ [100r | 0 i ik
Firefox | meerkat 0| o o | 4 | 0
Youtube o o [10 [ 6 | 0
bbe.co.uk 0| o 0o [ 0 | o Memory dump
ooglecom/search | 0 | 0 | 0 | 6 | 0
zoogle.com 0 | o | 100+ | 100+ | 0
Chrome | meerkat o o [ o [ 3]0
Youtube 0 0 [ 10 [100r] 0
bbe.couk o o0 [ o [8 |0 Menmory dump
google.com/search | 0 | 0 0o [ 2 | 0
‘oogle.com 0 [ 0| 100+ [ 100+ | 0
Opera | _meerkat 0] o 0 [ 3 | 0 Memory dump
Youtube 0o 0 [ 2 [17 [0
bbe.couk 0| o 0 | 57 | 0
google.com/search | 0 | 0 | 0 1 0
zoogle.com o | o 100+ 100+ | o





image20.jpg
= 8 @ Z 2
B Es t £s 5 zE $3é $E%
= K& o S: £ s £2 &
Firefox | meerkat 0o o [ 4 | ur Memory dump,
youtube 0o s | 23 [ s cookies.sqlite®,
bbe.couk O[O0 [T 2500 [19% | permissions.sqlite™, places sqlite™,
googlecom/search | 0 | 0 | 0 | 9 | 1% Thumbnails folder*,
‘google.com 0 [0 [ 100+ | 80 | 28¢ JjumpLisiCache folder*
Chrome | meerkat 0l o0 o | ss [ 7+
Youtube 0 [0 | 4 [100v | o* .
bbe.couk 0o o |16 | 13 e e
oogle.comsearch | 0 | 0 | 0 | 0 7 g
oogle.com 0 | 0 [ 100+ | 100+ | 15
Opera | meerkat 0 [ 0 | o [200+] 30¢ Memory dump, md.dat®,
youtube 0 | 0 | 3 [100+| 36 | auosavewin® opr9IC3imp*,
bbe.couk 0 [0 [ 0 [2006 ] 17° opr773D.mp*,
sooglecom/search | 0 | 0 | 0 | 54 7| global history.dar®, cookiesd.dar®,
‘google.com 0 | 0 | 100+ | 200+ | 23* opssl6.dat®, typed_history.xml*





image21.jpeg
= 8 @ Z 2
B Es t £s 5 zE $3é $E%
= K& o S: £ s £2 &
Firefox | meerkat 0o o [ 4 | ur Memory dump,
youtube 0o s | 23 [ s cookies.sqlite®,
bbe.couk O[O0 [T 2500 [19% | permissions.sqlite™, places sqlite™,
googlecom/search | 0 | 0 | 0 | 9 | 1% Thumbnails folder*,
‘google.com 0 [0 [ 100+ | 80 | 28¢ JjumpLisiCache folder*
Chrome | meerkat 0l o0 o | ss [ 7+
Youtube 0 [0 | 4 [100v | o* .
bbe.couk 0o o |16 | 13 e e
oogle.comsearch | 0 | 0 | 0 | 0 7 g
oogle.com 0 | 0 [ 100+ | 100+ | 15
Opera | meerkat 0 [ 0 | o [200+] 30¢ Memory dump, md.dat®,
youtube 0 | 0 | 3 [100+| 36 | auosavewin® opr9IC3imp*,
bbe.couk 0 [0 [ 0 [2006 ] 17° opr773D.mp*,
sooglecom/search | 0 | 0 | 0 | 54 7| global history.dar®, cookiesd.dar®,
‘google.com 0 | 0 | 100+ | 200+ | 23* opssl6.dat®, typed_history.xml*





image22.jpg
fox artifact location & recovery

Artifact Regular Private Location

Extension data used (block lists, etc) X X2 ../browser-extension-data
Crash data No data® No data® ../crashes

Application health report No data® No data® .../HealthReport
Application start up and shutdown activity for each session X X ./datareporting/archived/[date]
Extension configuration, setup, associated files, etc. % g ../extensions

Metadata associated with installed extensions X i ../Extensions json

Default Firefox addon data X X ../Addons json

Session data X - ../SessionStore js

Browser preferences X X ~/Prefsjs

User-stored logins (remember login for this site?) X - ../Loginsjson

Favicons from browsed sites X - ../Favicons.sqlite
Browsing cookies X - ./Cookies sqlite

Browsing history X - ~./Placessqlite

Key3.db, key to encrypt/decrypt stored user credentials X No data® ../Key3.db

Permissions granted to sites (notifications, location, etc.) No data® No data® .../Permissions.sqlite
User-submitted form history X - ../Formhistory.sqite




image23.jpeg
fox artifact location & recovery

Artifact Regular Private Location

Extension data used (block lists, etc) X X2 ../browser-extension-data
Crash data No data® No data® ../crashes

Application health report No data® No data® .../HealthReport
Application start up and shutdown activity for each session X X ./datareporting/archived/[date]
Extension configuration, setup, associated files, etc. % g ../extensions

Metadata associated with installed extensions X i ../Extensions json

Default Firefox addon data X X ../Addons json

Session data X - ../SessionStore js

Browser preferences X X ~/Prefsjs

User-stored logins (remember login for this site?) X - ../Loginsjson

Favicons from browsed sites X - ../Favicons.sqlite
Browsing cookies X - ./Cookies sqlite

Browsing history X - ~./Placessqlite

Key3.db, key to encrypt/decrypt stored user credentials X No data® ../Key3.db

Permissions granted to sites (notifications, location, etc.) No data® No data® .../Permissions.sqlite
User-submitted form history X - ../Formhistory.sqite




image24.jpg
Name

» [ doomed

v [ entries
0A1DSCOED35376FB786A9561CD55D1FDAI79A0DA
0A2D27ASCTEBT9B91AAEAIBE74D2A23155D50E9B.
0A2FB0395BAB596C72082406C1103476D90698DE
OA3ADF23CBOFCS7EDD12BEE24BEF86C013C4D688
OAJEA23CFBATC3593FACT686411893274EBOBALS
0ABDO17F3B209416240A95A3C611901452BD90CS
0AD7C5DFB2FC16682BFCE60ABOEBED2CCAB4ID64

index




image25.jpg
[ data0
[ data_1
[ data2
[ data3
(7] £.000009
(] £.0000ab
[ £.0000c7
[ £.0000c8
[ £.00add1
[ £.00add6
(] £.00ade1
[ £.00adec
[ index

03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:33

File
File
File
File
File
File
File
File
File
File
File
File
File

620KB
10,504 KB
10,248 KB
77,832K8
22K8
30K8
55KB
322K
204K8
20k8
29K8
32KB

257K8 =—>

Data/Block
Files

External
Files

Index File





image120.jpg
Name

» [ doomed

v [ entries
0A1DSCOED35376FB786A9561CD55D1FDAI79A0DA
0A2D27ASCTEBT9B91AAEAIBE74D2A23155D50E9B.
0A2FB0395BAB596C72082406C1103476D90698DE
OA3ADF23CBOFCS7EDD12BEE24BEF86C013C4D688
OAJEA23CFBATC3593FACT686411893274EBOBALS
0ABDO17F3B209416240A95A3C611901452BD90CS
0AD7C5DFB2FC16682BFCE60ABOEBED2CCAB4ID64

index




image13.jpg
[ data0
[ data_1
[ data2
[ data3
(7] £.000009
(] £.0000ab
[ £.0000c7
[ £.0000c8
[ £.00add1
[ £.00add6
(] £.00ade1
[ £.00adec
[ index

03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:32
03-03-2017 11:33

File
File
File
File
File
File
File
File
File
File
File
File
File

620KB
10,504 KB
10,248 KB
77,832K8
22K8
30K8
55KB
322K
204K8
20k8
29K8
32KB

257K8 =—>

Data/Block
Files

External
Files

Index File





image26.jpg
Search reputable
repository using relevant
keywords and date fiters

‘Based on tites,
are the retumed results
relevant?

Use different keyword
combination or date fiters
(potentially no recent
research on the topic)

Select a hand ull of resuts
‘which Iook relevant based
o their fitles.

Read the abstract|

cover the desired
scope and
s i relevant?

Discard, and go to the.
next source

Use s 3 primary

source, and move onto
next source.

Yes

Read the introduction
and conclusion

isitst Yo

o | Keep the source as it can siil
relevant?

lbe used for criical analysis, bu|

Read the rest of the iz

source.

fs itfuy
relevant?

fs itfuy
accurate?

|maybe don' use it as a primany|
Source. Goto next source.





